Skip to main content

Advertisement

Log in

Exosomes in renal cell carcinoma: challenges and opportunities

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2–3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.

In the upcoming article, we will review the various aspects of exosomes’ effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Zhang Y et al (2021) Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc Natl Acad Sci 118(24):e2103240118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim M et al (2020) Comprehensive immunoprofiles of renal cell carcinoma subtypes. Cancers 12(3):602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malyszko J et al (2020) The link between kidney disease and cancer: complications and treatment. Lancet 396(10246):277–287

    Article  CAS  PubMed  Google Scholar 

  4. Bukavina L et al (2022) Epidemiology of renal cell carcinoma: 2022 update. Eur Urol 82(5):529–542

    Article  PubMed  Google Scholar 

  5. Larroquette M et al (2022) Therapeutic management of metastatic Clear Cell Renal Cell Carcinoma: A Revolution in every decade. Cancers 14(24):6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballesteros PÁ et al (2021) Molecular mechanisms of resistance to immunotherapy and antiangiogenic treatments in clear cell renal cell carcinoma. Cancers 13(23):5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scholz H et al (2021) Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 17(5):335–349

    Article  CAS  PubMed  Google Scholar 

  8. Thurlow JS et al (2021) Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am J Nephrol 52(2):98–107

    Article  PubMed  Google Scholar 

  9. Jalali F, Nassiri A, Hakemi MS (2021) Awareness and knowledge about kidney transplantation: a reflection on the current state among Iranian patients with end-stage renal disease (ESRD) treated by Dialysis. Iran J Kidney Dis, 15(6)

  10. De Pasquale C et al (2020) Psychological and psychopathological aspects of kidney transplantation: a systematic review. Front Psychiatry 11:106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ammirati A (2020) Chronic Kidney Disease 66:s03–s09

    Google Scholar 

  12. Padala SA et al (2020) Epidemiology of renal cell carcinoma. World J Oncol 11(3):79–87

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ljungberg B et al (2022) European Association of Urology guidelines on renal cell carcinoma: the 2022 update European urology

  14. Rassy E et al (2020) New rising entities in cancer of unknown primary: is there a real therapeutic benefit? Crit Rev Oncol/Hematol 147:102882

    Article  PubMed  Google Scholar 

  15. Li J et al (2020) CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer 19:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang WC et al (2020) Chronic kidney disease and kidney cancer surgery: new perspectives. J Urol 203(3):475–485

    Article  PubMed  Google Scholar 

  17. Díaz-Montero CM, Rini BI, Finke JH (2020) The immunology of renal cell carcinoma. Nat Rev Nephrol 16(12):721–735

    Article  PubMed  Google Scholar 

  18. Brown JE et al (2023) Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): an open-label, non-inferiority, randomised, controlled, phase 2/3 trial. Lancet Oncol 24(3):213–227

    Article  CAS  PubMed  Google Scholar 

  19. Savaliya M et al (2023) Posterior reversible Encephalopathy Syndrome after Pazopanib Therapy. Diseases 11(2):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamli H, Li L, Gobe GC (2019) Limitations to the therapeutic potential of tyrosine kinase inhibitors and alternative therapies for kidney cancer. Ochsner J 19(2):138–151

    Article  PubMed  PubMed Central  Google Scholar 

  21. Braun DA et al (2021) Beyond conventional immune-checkpoint inhibition—novel immunotherapies for renal cell carcinoma. Nat Reviews Clin Oncol 18(4):199–214

    Article  CAS  Google Scholar 

  22. Mierzejewski B et al (2020) Human and mouse skeletal muscle stem and progenitor cells in health and disease. Seminars in cell & developmental biology. Elsevier

  23. Rajabzadeh N, Fathi E, Farahzadi R (2019) Stem cell-based regenerative medicine. Stem cell Invest, 6

  24. Franco ML, Beyerstedt S, Rangel ÉB (2021) Klotho and mesenchymal stem cells: a review on cell and gene therapy for chronic kidney disease and acute kidney disease. Pharmaceutics 14(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Changizi-Ashtiyani S et al (2020) The effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury. Iran J Basic Med Sci 23(8):999

    PubMed  PubMed Central  Google Scholar 

  26. Liu D et al (2020) Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther 11(1):1–20

    Article  CAS  Google Scholar 

  27. Changizi-Ashtiyani S et al (2020) The effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury. 23(8):999

  28. Fan X-L et al (2020) Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 77:2771–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu Z et al (2023) Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 14(1):1–16

    Article  CAS  Google Scholar 

  30. Li S et al (2021) Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis. Stem Cell Res Ther 12(1):1–17

    Google Scholar 

  31. Hafazeh L et al (2019) Stem cell therapy ameliorates ischemia-reperfusion induced kidney injury after 24 hours reperfusion. Iran J Kidney Dis 13(6):380

    PubMed  Google Scholar 

  32. Bochon B et al (2019) Mesenchymal stem cells—potential applications in kidney diseases. 20(10):2462

  33. Hussen BM et al (2022) Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell Int 22(1):1–23

    Article  Google Scholar 

  34. Sidhom K, Obi PO, Saleem A (2020) A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci 21(18):6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altyar AE et al (2023) Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 158:114131

    Article  CAS  PubMed  Google Scholar 

  36. Gurung S et al (2021) The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication Signal 19(1):1–19

    Article  Google Scholar 

  37. Tschuschke M et al (2020) Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. 9(2):436

  38. Gonda A et al (2020) Cellular-defined microenvironmental internalization of exosomes Extracellular Vesicles and Their Importance in Human Health, : p. 1–30

  39. Gurunathan S et al (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. 8(4):307

  40. Amini H et al (2021) An examination of the putative role of melatonin in exosome biogenesis. Front Cell Dev Biology 9:686551

    Article  Google Scholar 

  41. Frankel E, Audhya A (2018) ESCRT-dependent cargo sorting at multivesicular endosomes. In seminars in cell & developmental biology. Elsevier

  42. Momen LT et al (2021) Regeneration and diagnosis of kidney Disease using Exosomes. Jentashapir J Cell Mol Biology, 12(4)

  43. Xie JX et al (2017) MicroRNA profiling in kidney disease: plasma versus plasma-derived exosomes. Gene 627:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stefańska K et al (2023) The role of exosomes in Human Carcinogenesis and Cancer Therapy—recent findings from Molecular and Clinical Research. 12(3):356

  45. Zhang C et al (2018) Exosome: function and role in cancer metastasis and drug resistance. Technol Cancer Res Treat 17:1533033818763450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nam GH et al (2020) Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater 32(51):2002440

    Article  CAS  Google Scholar 

  47. Hiltbrunner S et al (2016) Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget 7(25):38707

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pitt JM et al (2016) Dendritic cell–derived exosomes for cancer therapy. J Clin Investig 126(4):1224–1232

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu Y et al (2022) Role of macrophages in tumor progression and therapy. Int J Oncol 60(5):1–19

    Article  Google Scholar 

  50. Paskeh MDA et al (2022) Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 15(1):1–39

    Article  Google Scholar 

  51. Mantovani A et al (2022) Macrophages as tools and targets in cancer therapy : p. 1–22

  52. Ding X et al (2022) Eng Macrophages via Nanatechnol Genetic Manipulation cancer Therapy 11:786913

    Google Scholar 

  53. Yunna C et al (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

    Article  PubMed  Google Scholar 

  54. Wang H et al (2021) The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci 22(12):6560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cassetta L, Pollard JW (2020) Tumor-associated macrophages. Curr Biol 30(6):R246–R248

    Article  CAS  PubMed  Google Scholar 

  56. Zou Z et al (2020) mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. 10(1):1–11

  57. Tang T-T et al (2020) Extracellular vesicle–encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv 6(33):eaaz0748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ben-Sahra I, Manning BD (2017) mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 45:72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins SL et al (2021) mTORC1 signaling regulates proinflammatory macrophage function and metabolism. J Immunol 207(3):913–922

    Article  CAS  PubMed  Google Scholar 

  60. Novais AA et al (2021) Exosomes and melatonin: where their destinies intersect. Front Immunol 12:692022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maleki M et al (2021) Multiple interactions between melatonin and non-coding RNAs in cancer biology, vol 98. Chemical Biology & Drug Design, pp 323–340. 3

  62. Jin C et al (2021) Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases 2021

  63. Jin C et al (2021) Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases Stem cells international, 2021

  64. Tapparo M et al (2019) Renal regenerative potential of extracellular vesicles derived from miRNA-engineered mesenchymal stromal cells. 20(10):2381

  65. Zhang C et al (2020) Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano 14(9):12133–12147

    Article  CAS  PubMed  Google Scholar 

  66. Liao C et al (2022) Potential Therapeutic Effect Mech Mesenchymal stem cells-extracellular Vesicles Ren Fibros 10

  67. Zhang W et al (2018) MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. 4(3):412–419

  68. Fang P et al (2020) Targeting strategies for renal cancer stem cell therapy. Curr Pharm Design 26(17):1964–1978

    Article  CAS  Google Scholar 

  69. He X et al (2022) Circulating exosomal mRNA signatures for the early diagnosis of clear cell renal cell carcinoma. 20(1):1–13

  70. Sun IO, Lerman LO (2020) Urinary extracellular vesicles as biomarkers of kidney disease: from diagnostics to therapeutics. Diagnostics 10(5):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chatterjee N, Bivona TG (2019) Polytherapy and targeted cancer drug resistance. Trends cancer 5(3):170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barton S et al (2023) miR-23b-3p regulates human endometrial epithelial cell adhesion implying a role in implantation. Reproduction 165(4):407–416

    Article  CAS  PubMed  Google Scholar 

  73. Guo Y-X et al (2021) The role of miR-23b in cancer and autoimmune disease Journal of Oncology, 2021

  74. Xu N et al (2022) Exosomes-mediated tumor treatment: one body plays multiple roles. 17(3):385–400

  75. Zhang Y et al (2010) Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol 36(1):133–140

    Article  PubMed  Google Scholar 

  76. Shi L et al (2021) MicroRNAs in body fluids: a more promising biomarker for clear cell renal cell carcinoma. Cancer Manage Res, : p. 7663–7675

  77. Boussios S et al (2023) Exosomes in the diagnosis and treatment of renal cell Cancer. Int J Mol Sci 24(18):14356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chung I-M et al (2020) Exosomes: current use and future applications. Clin Chim Acta 500:226–232

    Article  CAS  PubMed  Google Scholar 

  79. Mataki H et al (2015) Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J Hum Genet 60(2):53–61

    Article  CAS  PubMed  Google Scholar 

  80. Yu Z et al (2013) Identification of miR-7 as an oncogene in renal cell carcinoma. J Mol Histol 44(6):669–677

    Article  CAS  PubMed  Google Scholar 

  81. Liu L et al (2019) Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle 18(3):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Onyshchenko K et al (2020) Expression of micro-RNA hsa-miR-30c-5p and hsa-mir-138-1 in renal cell carcinoma. Exp Oncol 42:115–119

    Article  CAS  PubMed  Google Scholar 

  83. Liang L et al (2021) Retracted: miR-30d‐5p suppresses proliferation and autophagy by targeting ATG5 in renal cell carcinoma. FEBS open bio 11(2):529–540

    Article  CAS  PubMed  Google Scholar 

  84. Zeng J et al (2020) lncRNA 00312 attenuates cell proliferation and invasion and promotes apoptosis in renal cell carcinoma via miR-34a-5p/ASS1 axis Oxidative medicine and cellular longevity, 2020

  85. Toraih EA et al (2017) MicroRNA-34a: a key regulator in the hallmarks of renal cell carcinoma Oxidative Medicine and Cellular Longevity, 2017

  86. Osako Y et al (2019) Potential tumor–suppressive role of microRNA–99a–3p in sunitinib–resistant renal cell carcinoma cells through the regulation of RRM2. Int J Oncol 54(5):1759–1770

    CAS  PubMed  Google Scholar 

  87. Sun K et al (2019) Long non-coding RNA XIST regulates miR-106b-5p/P21 axis to suppress tumor progression in renal cell carcinoma. Biochem Biophys Res Commun 510(3):416–420

    Article  CAS  PubMed  Google Scholar 

  88. Miao L-J et al (2019) miR-106b promotes proliferation and invasion by targeting Capicua through MAPK signaling in renal carcinoma cancer. OncoTargets Therapy 12:3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu Y et al (2020) miR–133b affects cell proliferation, invasion and chemosensitivity in renal cell carcinoma by inhibiting the ERK signaling pathway. Mol Med Rep 22(1):67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan C et al (2022) MiR-1294 suppresses ROS-dependent inflammatory response in atopic dermatitis via restraining STAT3/NF-κB pathway. Cell Immunol 371:104452

    Article  CAS  PubMed  Google Scholar 

  91. Liu S et al (2023) HES1-mediated down-regulation of miR-138 sustains NOTCH1 activation and promotes proliferation and invasion in renal cell carcinoma. J Experimental Clin Cancer Res 42(1):1–15

    Article  Google Scholar 

  92. Dasgupta P et al (2020) LncRNA CDKN2B-AS1/miR-141/cyclin D network regulates tumor progression and metastasis of renal cell carcinoma. Cell Death Dis 11(8):660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang J et al (2021) SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis 12(7):672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang X et al (2019) Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem 120(2):1492–1502

    Article  CAS  PubMed  Google Scholar 

  95. Dias F et al (2017) Plasmatic miR-210, miR-221 and miR-1233 profile: potential liquid biopsies candidates for renal cell carcinoma. Oncotarget 8(61):103315

    Article  PubMed  PubMed Central  Google Scholar 

  96. Toraih EA et al (2022) Applications of noncoding RNAs in renal cancer patients, in clinical applications of non-coding RNAs in Cancer. Elsevier, pp 211–284

  97. Wang Z, Xie W, Guan H (2023) Diverse functions of MiR-425 in Human Cancer. DNA Cell Biol 42(3):113–129

    Article  PubMed  Google Scholar 

  98. Jia G et al (2019) Mir-590-5p promotes liver cancer growth and chemotherapy resistance through directly targeting FOXO1. Am J Translational Res 11(4):2181

    CAS  Google Scholar 

  99. Cheng L et al (2021) Circ_RPL23A acts as a miR-1233 sponge to suppress the progression of clear cell renal cell carcinoma by promoting ACAT2. J Bioenerg Biomembr 53(4):415–428

    Article  CAS  PubMed  Google Scholar 

  100. Kalhori MR et al (2022) The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: an oncomiR or onco‐suppressor microRNA? J Cell Biochem 123(3):506–531

    Article  CAS  PubMed  Google Scholar 

  101. Anbiyaee O et al (2023) The functions of long non-coding RNA (lncRNA)-MALAT-1 in the pathogenesis of renal cell carcinoma. BMC Nephrol 24(1):380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bravo-Vázquez LA et al (2024) Exploring the therapeutic significance of microRNAs and lncRNAs in kidney diseases. Genes 15(1):123

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhou W et al (2023) Yin Yang 1-Induced Long Noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking CDK1‐Mediated EZH2 degradation. Adv Sci 10(25):2207549

    Article  CAS  Google Scholar 

  104. Kulkarni P et al (2021) A lncRNA TCL6-miR-155 interaction regulates the src-Akt-EMT network to mediate kidney cancer progression and metastasis. Cancer Res 81(6):1500–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li T et al (2022) Identification of a three-glycolysis-related lncRNA signature correlated with prognosis and metastasis in clear cell renal cell carcinoma. Front Med 8:777507

    Article  Google Scholar 

  106. Xu P et al (2023) LncRNA AGAP2 antisense RNA 1 stabilized by insulin-like growth factor 2 mRNA binding protein 3 promotes macrophage M2 polarization in clear cell renal cell carcinoma through regulation of the microRNA-9-5p/THBS2/PI3K-Akt pathway. Cancer Cell Int 23(1):330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fu S et al (2021) Prognostic value of long noncoding RNA DLEU2 and its relationship with immune infiltration in kidney renal clear cell carcinoma and liver hepatocellular carcinoma. Int J Gen Med, : p. 8047–8064

  108. Zhou F-J et al (2022) LncRNA LINC00460 facilitates the proliferation and metastasis of renal cell carcinoma via PI3K/AKT signaling pathway. J Cancer 13(9):2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang D et al (2019) Down-regulation of circular RNA_000926 attenuates renal cell carcinoma progression through miRNA-411–dependent CDH2 inhibition. Am J Pathol 189(12):2469–2486

    Article  CAS  PubMed  Google Scholar 

  110. Luo S et al (2022) Circ_0005875 sponges miR-502-5p to promote renal cell carcinoma progression through upregulating E26 transformation specific-1 Anti-cancer drugs. 33(1):e286–e298

  111. Gong L-J et al (2021) CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 12(11):1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang L, Ye T, An Y (2021) Circular RNA FOXP1 induced by ZNF263 upregulates U2AF2 expression to accelerate renal cell carcinoma tumorigenesis and warburg effect through Sponging miR-423-5p Journal of Immunology Research, 2021

  113. Li W et al (2021) Revealing potential lipid biomarkers in clear cell renal cell carcinoma using targeted quantitative lipidomics. Lipids Health Dis 20:1–13

    Article  Google Scholar 

  114. Xu Z et al (2023) Identify AGAP2 as prognostic biomarker in clear cell renal cell carcinoma based on bioinformatics and IHC staining. Heliyon, 9(2)

  115. Song Q et al (2022) Exosomes in urological diseases-biological functions and clinical applications. Cancer Lett, : p. 215809

  116. Song Q et al (2022) Exosomes in urological diseases-Biological functions and clinical applications : p. 215809

  117. Sávio-Silva C et al (2020) Mesenchymal stem cell therapy in acute kidney injury (AKI): review and perspectives. Revista Da Associação Médica Brasileira 66:s45–s54

    Article  Google Scholar 

  118. Yoon YM et al (2020) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease‐derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res 68(3):e12632

    Article  CAS  PubMed  Google Scholar 

  119. Yoon YM et al (2020) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease‐derived mesenchymal stem/stromal cells via cellular prion proteins 68(3): p. e12632

  120. Birtwistle L, Chen X-M, Pollock C (2021) Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci 22(12):6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao L et al (2020) Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. 5(1):9

  122. Su T et al (2021) Exosomal MicroRNAs mediating crosstalk between cancer cells with cancer-associated fibroblasts and tumor-associated macrophages in the tumor microenvironment. Front Oncol 11:631703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baig MS et al (2020) Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res 69:435–451

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Wl et al (2020) Extracellular vesicle long non–coding RNA-mediated crosstalk in the tumor microenvironment: tiny molecules, huge roles. Cancer Sci 111(8):2726–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang W et al (2022) Renal cell carcinoma-derived exosomes deliver lncARSR to induce macrophage polarization and promote tumor progression via STAT3 pathway. 18(8):3209–3222

  126. Monti M et al (2022) Micro-RNAs predict response to systemic treatments in metastatic renal cell carcinoma patients: results from a systematic review of the literature. Biomedicines 10(6):1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peng J et al (2015) let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. 13:1–8

  128. Du M et al (2017) Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 8(38):63703

    Article  PubMed  PubMed Central  Google Scholar 

  129. Srivastava A et al (2018) Exosome RNAs as biomarkers and targets for cancer therapy. Diagnostic and therapeutic applications of exosomes in cancer. Elsevier, pp 129–159

  130. Olejarz W et al (2020) Exosomes in angiogenesis and anti-angiogenic therapy in cancers. Int J Mol Sci 21(16):5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1 blood. J Am Soc Hematol 124(25):3748–3757

    CAS  Google Scholar 

  132. Olejarz W et al (2020) Exosomes in angiogenesis and anti-angiogenic therapy in cancers. 21(16):5840

  133. Jahani M et al (2020) Regenerative medicine and angiogenesis; challenges and opportunities. Adv Pharm Bull 10(4):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Long C et al (2023) Therapeutic potential of exosomes from adipose-derived stem cells in chronic wound healing Application of Stem Cell Therapy and Bioinformatics in Wound Repair and Skin Diseases. 16648714:118

  135. Jahani M et al (2020) Regenerative medicine and angiogenesis; challenges and opportunities. 10(4):490

  136. Kučuk N et al (2021) Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int J Mol Sci 22(17):9543

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chen L et al (2022) Exosomes as drug carriers in anti-cancer therapy. Front Cell Dev Biology 10:34

    Google Scholar 

  138. Chen J et al (2022) Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 9:811971

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liga A et al (2015) Exosome isolation: a microfluidic road-map. Lab Chip 15(11):2388–2394

    Article  CAS  PubMed  Google Scholar 

  140. Xu M et al (2020) Recent advancements in the loading and modification of therapeutic exosomes. 8:586130

  141. Ghafouri-Fard S et al (2021) The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 142:112050

    Article  CAS  PubMed  Google Scholar 

  142. Choi H et al (2021) Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regenerative Med 18(4):499–511

    Article  CAS  Google Scholar 

  143. Faruqu FN, Xu L, Al-Jamal KT (2018) Preparation of exosomes for siRNA delivery to cancer cells. JoVE (Journal Visualized Experiments), (142): p. e58814

  144. Jafari D et al (2020) Designer exosomes: a new platform for biotechnology therapeutics. BioDrugs 34:567–586

    Article  PubMed  PubMed Central  Google Scholar 

  145. Aslan C et al (2021) Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol 21:1–12

    Article  Google Scholar 

  146. Yim N et al (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun 7(1):12277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hadizadeh N et al (2022) Extracellular vesicles biogenesis, isolation, manipulation and genetic engineering for potential in vitro and in vivo therapeutics: an overview. Front Bioeng Biotechnol, 10

  148. Kim J et al (2021) Platform technologies and human cell lines for the production of therapeutic exosomes. Extracell Vesicles Circulating Nucleic Acids 2(1):3–17

    Google Scholar 

  149. Uddin N et al (2022) Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharm Sinica B

  150. Smyth T et al (2014) Surface functionalization of exosomes using click chemistry. Bioconjug Chem 25(10):1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kumar S et al (2018) Cloaked exosomes: biocompatible, durable, and degradable encapsulation. Small 14(34):1802052

    Article  Google Scholar 

  152. Nie W et al (2020) Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed 59(5):2018–2022

    Article  CAS  Google Scholar 

  153. Johnsen KB et al (2016) Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology 68:2125–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim MS et al (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells Nanomedicine: Nanotechnology, Biology and Medicine, 12(3): p. 655–664

  155. Pammi Guru KT, Praween N, Basu PK (2023) Isolation of exosomes from human serum using gold-nanoparticle-coated Silicon Surface. Nanomaterials 13(3):387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen H et al (2021) Exosomes, a new star for targeted delivery. Front Cell Dev Biology, : p. 2827

  157. Whiteside TL (2016) J.A.i.c.c. Tumor-derived Exosomes Their role cancer Progression 74:103–141

    CAS  Google Scholar 

  158. Mu W, Rana S, Zöller MJN (2013) Host Matrix Modulation Tumor Exosomes Promotes Motil Invasiveness 15(8):875–IN4

    Google Scholar 

  159. Lokody IJNRC (2014) Exosomally derived miR-105 destroys tight junctions. 14(6):386–387

  160. Zhou W et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. 25(4):501–515

  161. Zhang L (2019) D.J.B.e.B.A.-R.o.C. Yu. Exosomes cancer Dev Metastasis Immun 1871(2):455–468

    CAS  Google Scholar 

  162. Wong C-H (2019) And Y.-C.J.W.j.o.c.c. Chen. Clin Significance Exosomes as Potential Biomarkers cancer 7(2):171

    Google Scholar 

  163. Makler A (2020) W.J.E.r.o.m.d. Asghar. Exosomal Biomarkers cancer Diagnosis Patient Monit 20(4):387–400

    CAS  Google Scholar 

Download references

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Houshang Najafi, designed the study and reviewed and edited the manuscript, Mahan Mohammadi contributed to conceptualization, reviewed the literature and wrote the manuscript draft. Kamran Mansouri and Mehran Pournazeri participated in drafting the manuscript and editing. Pantea Mohammadi, contributed to figure designing.All authors reviewed the manuscript.

Corresponding author

Correspondence to Houshang Najafi.

Ethics declarations

Ethical approval

This study was approved by the research deputy of Kermanshah University of Medical Sciences, Kermanshah, Iran (Ethics approval ID: IR.KUMS.REC.1401.253).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Mansouri, K., Mohammadi, P. et al. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 51, 443 (2024). https://doi.org/10.1007/s11033-024-09384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09384-x

Keywords

Navigation