Skip to main content

Advertisement

Log in

Adenosine receptors in breast cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Adenosine receptors are important in the normal physiological function of cells and the pathogenesis of various cancer cells, including breast cancer cells. The activity of adenosine receptors in cancer cells is related to cell proliferation, angiogenesis, metastasis, immune system evasion, and interference with apoptosis. Considering the different roles of adenosine receptors in cancer cells, we intend to investigate the function of adenosine receptors and their biological pathways in breast cancer to improve understanding of therapeutically relevant signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mohammed MM et al (2021) The relation between ACKR4 and CCR7 genes expression and breast cancer metastasis. Life Sci 279:119691

    Article  CAS  PubMed  Google Scholar 

  2. Sharma JD, Kataki AC, Kalita M (2020) Influence of hormone receptors in breast cancer survival with correlation to place of residence. J Cancer Res Ther 16(6):1371–1375

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y et al (2021) A Novel Immune and Stroma related prognostic marker for invasive breast Cancer in Tumor Microenvironment: a TCGA based study. Front Endocrinol (Lausanne) 12:774244

    Article  PubMed  Google Scholar 

  4. Mandapathil M et al (2021) Breast cancer cell-derived adenosine enhances generation and suppressor function of human adaptive regulatory t cells. J Pers Med 11(8):754

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shamloo B et al (2019) Dysregulation of adenosine kinase isoforms in breast cancer. Oncotarget 10(68):7238–7250

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shi L et al (2019) Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol Biol Cell 30(19):2527–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gessi S et al (2017) Inhibition of A(2A) Adenosine Receptor Signaling in Cancer cells proliferation by the Novel antagonist TP455. Front Pharmacol 8:888

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lan J et al (2022) Chemotherapy-induced adenosine A2B receptor expression mediates epigenetic regulation of pluripotency factors and promotes breast cancer stemness. Theranostics 12(6):2598–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmad A et al (2013) Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways. Biochem Biophys Res Commun 434(3):566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mousavi S et al (2015) Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 75(7):735–747

    Article  CAS  PubMed  Google Scholar 

  11. Borea PA et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102

    Article  PubMed  Google Scholar 

  12. Jones KR et al (2017) A novel method for screening adenosine receptor specific agonists for Use in Adenosine Drug Development. Sci Rep 7:44816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai T et al (2016) AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor. Biomaterials 83:37–50

    Article  CAS  PubMed  Google Scholar 

  14. Mohamed SK et al (2023) Insights into the crystal structure and computational studies of newly synthesized thiazolopyrimidine derivatives against adenosine receptor (thermostabilised HUMAN A2a). J Mol Struct 1284:135372

    Article  CAS  Google Scholar 

  15. Kitabatake K et al (2020) Involvement of adenosine A2B receptor in radiation-induced translocation of epidermal growth factor receptor and DNA damage response leading to radioresistance in human lung cancer cells. Biochim Biophys Acta Gen Subj 1864(1):129457

    Article  CAS  PubMed  Google Scholar 

  16. Jafari SM et al (2018) A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell Oncol (Dordr) 41(1):61–72

    Article  CAS  PubMed  Google Scholar 

  17. Haeusler D et al (2015) Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor. Eur J Nucl Med Mol Imaging 42(6):928–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jafari SM et al (2017) Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44(+) and CD24(-) breast cancer stem cells. Cell Prolif 50(4):e12345

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sheth S et al (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15(2):2024–2052

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kiss Z et al (2013) The guinea pig atrial A1 adenosine receptor reserve for the direct negative inotropic effect of adenosine. Gen Physiol Biophys 32(3):325–335

    Article  CAS  PubMed  Google Scholar 

  21. Dastjerdi MN et al (2016) The effect of adenosine A1 receptor agonist and antagonist on p53 and caspase 3, 8, and 9 expression and apoptosis rate in MCF-7 breast cancer cell line. Res Pharm Sci 11(4):303–310

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dastjerdi MN et al (2016) Adenosine A1 receptor modifies P53 expression and apoptosis in breast cancer cell line Mcf-7. Bratisl Lek Listy 117(4):242–246

    PubMed  Google Scholar 

  23. Park S et al (2022) Design, synthesis and biological evaluation of 1,3,5-Triazine derivatives targeting hA(1) and hA(3) adenosine receptor. Molecules 27(13):4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohamadi A, Aghaei M, Panjehpour M (2018) Estrogen stimulates adenosine receptor expression subtypes in human breast cancer MCF-7 cell line. Res Pharm Sci 13(1):57–64

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zeynali P et al (2023) A1 adenosine receptor antagonist induces cell apoptosis in KYSE-30 and YM-1 esophageal cancer cell lines. BioMedicine 13(1):54–61

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asgharkhah E et al (2022) Role of A1 adenosine receptor in survival of human lung cancer. Gene Rep 28:101649

    Article  CAS  Google Scholar 

  27. Caliman AD, Miao Y, McCammon JA (2018) Mapping the allosteric sites of the A(2A) adenosine receptor. Chem Biol Drug Des 91(1):5–16

    Article  CAS  PubMed  Google Scholar 

  28. Young A et al (2018) A2AR Adenosine Signaling suppresses natural killer cell maturation in the Tumor Microenvironment. Cancer Res 78(4):1003–1016

    Article  CAS  PubMed  Google Scholar 

  29. Maslov I et al (2023) Sub-millisecond conformational dynamics of the A2A adenosine receptor revealed by single-molecule FRET. Commun Biology 6(1):362

    Article  CAS  Google Scholar 

  30. Asgharkhah E et al (2023) Gene expression pattern of adenosine receptors in lung tumors. Cancer Rep 6(3):e1747

    Article  CAS  Google Scholar 

  31. Myojin Y et al (2024) Adenosine A2a receptor inhibition increases the anti-tumor efficacy of anti-PD1 treatment in murine hepatobiliary cancers. JHEP Rep 6(1):100959

    Article  PubMed  Google Scholar 

  32. Kasama H et al (2015) Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer 15:563

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kwon JH et al (2019) HIF-1α regulates A2B adenosine receptor expression in liver cancer cells. Exp Ther Med 18(6):4231–4240

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hajiahmadi S et al (2015) Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 93(4):321–329

    Article  CAS  PubMed  Google Scholar 

  35. Cekic C et al (2012) Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J Immunol 188(1):198–205

    Article  CAS  PubMed  Google Scholar 

  36. Chi L et al (2023) Adenosine receptor A2b confers ovarian cancer survival and PARP inhibitor resistance through IL-6-STAT3 signalling. J Cell Mol Med 27(15):2150–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jafari SM et al (2017) A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI-1 and ERK1/2 pathway. J Cell Biochem 118(9):2909–2920

    Article  CAS  PubMed  Google Scholar 

  38. Joshaghani HR et al (2017) A3 adenosine receptor agonist induce G1 cell cycle arrest via cyclin D and cyclin-dependent kinase 4 pathways in OVCAR-3 and Caov-4 cell lines. J Cancer Res Ther 13(1):107–112

    Article  CAS  PubMed  Google Scholar 

  39. Tong Y et al (2018) Corilagin inhibits breast cancer growth via reactive oxygen species-dependent apoptosis and autophagy. J Cell Mol Med 22(8):3795–3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z et al (2016) Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1. Arch Pharm Res 39(10):1441–1453

    Article  CAS  PubMed  Google Scholar 

  41. Wang J et al (2018) JARID1B modulates breast cancer cell apoptosis by regulating p53 expression. Int J Clin Exp Pathol 11(9):4529–4536

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Masaki T et al (2021) Calcineurin regulates the stability and activity of estrogen receptor α. Proc Natl Acad Sci  118(44):e2114258118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin Z et al (2010) Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 29(8):1114–1122

    Article  CAS  PubMed  Google Scholar 

  44. Jin H et al (2021) Increased extracellular adenosine in radiotherapy-resistant breast cancer cells enhances tumor progression through A2AR-Akt-β-Catenin signaling. Cancers 13(9):2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koussémou M, Lorenz K, Klotz KN (2018) The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS ONE 13(8):e0202914

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koussémou M, Klotz KN (2019) Agonists activate different A(2B) adenosine receptor signaling pathways in MBA-MD-231 breast cancer cells with distinct potencies. Naunyn Schmiedebergs Arch Pharmacol 392(12):1515–1521

    Article  PubMed  Google Scholar 

  47. Lan J et al (2018) Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc Natl Acad Sci U S A 115(41):E9640–e9648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ledderose C et al (2016) Adenosine arrests breast cancer cell motility by A3 receptor stimulation. Purinergic Signal 12(4):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Horigome E et al (2018) Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 9(77):34554–34566

    Article  PubMed  PubMed Central  Google Scholar 

  50. Varani K et al (2013) The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer 49(2):482–491

    Article  CAS  PubMed  Google Scholar 

  51. Chung H et al (2006) The antitumor effect of LJ-529, a novel agonist to A3 adenosine receptor, in both estrogen receptor-positive and estrogen receptor-negative human breast cancers. Mol Cancer Ther 5(3):685–692

    Article  CAS  PubMed  Google Scholar 

  52. Panjehpour M, Castro M, Klotz KN (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2 + signal. Br J Pharmacol 145(2):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Panjehpour M, Hemati S, Forghani MA (2012) Expression of A1 and A3 adenosine receptors in human breast tumors. Tumori 98(1):137–141

    Article  CAS  PubMed  Google Scholar 

  54. Panjehpour M, Karami-Tehrani F (2007) Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res 16(12):575–585

    Article  CAS  PubMed  Google Scholar 

  55. Tang K et al (2021) Hypoxia promotes breast Cancer cell growth by activating a glycogen metabolic program. Cancer Res 81(19):4949–4963

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H et al (2021) Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging 13(6):8115–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ephraim R et al (2022) Checkpoint markers and tumor microenvironment: what do we know? Cancers 14(15):3788

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu M et al (2021) The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 9:e11306

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tay AHM et al (2022) A(2B) adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. J Immunother Cancer 10(5):e004592

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shi W et al (2022) COL11A1 as an novel biomarker for breast cancer with machine learning and immunohistochemistry validation. Front Immunol 13:937125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ohta A (2016) A metabolic Immune checkpoint: Adenosine in Tumor Microenvironment. Front Immunol 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sek K et al (2018) Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci 19(12):3837

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MM: Writing of manuscript: contributed to the design of the title. NH: Contributed to the writing of the manuscript and grammar editing. AS: Contributed to the writing of the manuscript and signaling pathway editing. HA: Contributed to correcting the reviewer’s comments in the revised manuscript and grammar editing of the revised manuscript. SMJ: The design of the title and Editing of the manuscript.

Corresponding author

Correspondence to Seyyed Mehdi Jafari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This work does not include any experiments conducted on human or animal participants by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdizadeh, M., Heydari, N., Shafiei, A. et al. Adenosine receptors in breast cancer. Mol Biol Rep 51, 464 (2024). https://doi.org/10.1007/s11033-024-09382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09382-z

Keywords

Navigation