Skip to main content

Advertisement

Log in

Search progress of pyruvate kinase M2 (PKM2) in organ fibrosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fibrosis is characterized by abnormal deposition of the extracellular matrix (ECM), leading to organ structural remodeling and loss of function. The principal cellular effector in fibrosis is activated myofibroblasts, which serve as the main source of matrix proteins. Metabolic reprogramming, transitioning from mitochondrial oxidative phosphorylation to aerobic glycolysis, is widely observed in rapidly dividing cells such as tumor cells and activated myofibroblasts and is increasingly recognized as a fundamental pathogenic basis in organ fibrosis. Targeting metabolism represents a promising strategy to mitigate fibrosis. PKM2, a key enzyme in glycolysis, plays a pivotal role in metabolic reprogramming through allosteric regulation, impacting both metabolic and non-metabolic pathways. Therefore, metabolic reprogramming induced by PKM2 activation is involved in the occurrence and development of fibrosis in various organs. A comprehensive understanding of the role of PKM2 in fibrotic diseases is crucial for seeking new anti-fibrotic therapeutic targets. In this context, we summarize PKM2’s role in glycolysis, mediating the intricate mechanisms underlying fibrosis in multiple organs, and discuss the potential value of PKM2 inhibitors and allosteric activators in future clinical treatments, aiming to identify novel therapeutic targets for proliferative fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. https://doi.org/10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaupel P, Schmidberger H, Mayer A (2019) The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95(7):912–919. https://doi.org/10.1080/09553002.2019.1589653

    Article  CAS  PubMed  Google Scholar 

  3. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314. https://doi.org/10.1126/science.123.3191.309

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zhang X, Zheng C, Gao Z, Wang L, Chen C, Zheng Y, Meng Y (2021) PKM2 promotes angiotensin-II-induced cardiac remodelling by activating TGF-β/Smad2/3 and Jak2/Stat3 pathways through oxidative stress. J Cell Mol Med 25(22):10711–10723. https://doi.org/10.1111/jcmm.17007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Z, Zhu Z, Liang W, Luo Z, Hu J, Feng J, Zhang Z, Luo Q, Yang H, Ding G (2023) Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int 103(4):735–748. https://doi.org/10.1016/j.kint.2023.01.007

    Article  CAS  PubMed  Google Scholar 

  6. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11(3):1980–1986. https://doi.org/10.3892/ol.2016.4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261(29):13807–13812

    Article  CAS  PubMed  Google Scholar 

  8. Tamada M, Suematsu M, Saya H (2012) Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res 18(20):5554–5561. https://doi.org/10.1158/1078-0432.Ccr-12-0859

    Article  CAS  PubMed  Google Scholar 

  9. Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44(27):9417–9429. https://doi.org/10.1021/bi0474923

    Article  CAS  PubMed  Google Scholar 

  10. Keller KE, Tan IS, Lee YS (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338(6110):1069–1072. https://doi.org/10.1126/science.1224409

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462. https://doi.org/10.1038/nature11540

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang P, Li Z, Fu R, Wu H, Li Z (2014) Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal 26(9):1853–1862. https://doi.org/10.1016/j.cellsig.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, Wei C, Guo F, Chen Y, Lu Z (2014) PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell 53(1):75–87. https://doi.org/10.1016/j.molcel.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 9:157–179. https://doi.org/10.1146/annurev-pathol-012513-104706

    Article  CAS  PubMed  Google Scholar 

  15. Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X et al (2022) PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. Sci Adv 8(38):eabo0987. https://doi.org/10.1126/sciadv.abo0987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janowiak P, Szymanowska-Narloch A, Siemińska A (2022) IPF respiratory symptoms management - current evidence. Front Med (Lausanne) 9. https://doi.org/10.3389/fmed.2022.917973

  17. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, Bernard K, Thannickal VJ, Liu G (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 192(12):1462–1474. https://doi.org/10.1164/rccm.201504-0780OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122(8):2756–2762. https://doi.org/10.1172/jci60323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinz B (2012) Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc 9(3):137–147. https://doi.org/10.1513/pats.201202-017AW

    Article  CAS  PubMed  Google Scholar 

  20. Han H, Zhang Y, Peng G, Li L, Yang J, Yuan Y, Xu Y, Liu ZR (2021) Extracellular PKM2 facilitates organ-tissue fibrosis progression. iScience 24(10):103165. https://doi.org/10.1016/j.isci.2021.103165

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J, 336 (Pt 1)(Pt 1): 1–17.https://doi.org/10.1042/bj3360001

  22. Yang W, Lu Z (2015) Pyruvate kinase M2 at a glance. J Cell Sci 128(9):1655–1660. https://doi.org/10.1242/jcs.166629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo W, Semenza GL (2012) Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 23(11):560–566. https://doi.org/10.1016/j.tem.2012.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satyanarayana G, Turaga RC, Sharma M, Wang S, Mishra F, Peng G, Deng X, Yang J, Liu ZR (2021) Pyruvate kinase M2 regulates fibrosis development and progression by controlling glycine auxotrophy in myofibroblasts. Theranostics 11(19):9331–9341. https://doi.org/10.7150/thno.60385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ao J, Li B (2012) Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Sci Technol Int 18(5):425–434. https://doi.org/10.1177/1082013211428219

    Article  CAS  PubMed  Google Scholar 

  26. Sterling RK, Oakes T, Gal TS, Stevens MP, deWit M, Sanyal AJ (2020) The Fibrosis-4 index is Associated With need for mechanical ventilation and 30-Day mortality in patients admitted with Coronavirus Disease 2019. J Infect Dis 222(11):1794–1797. https://doi.org/10.1093/infdis/jiaa550

    Article  CAS  PubMed  Google Scholar 

  27. Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y, He Z (2020) PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest 100(6):801–811. https://doi.org/10.1038/s41374-020-0404-9

    Article  CAS  PubMed  Google Scholar 

  28. Mei S, Xu Q, Hu Y, Tang R, Feng J, Zhou Y, Xing S, Gao Y, He Z (2022) Integrin β3-PKM2 pathway-mediated aerobic glycolysis contributes to mechanical ventilation-induced pulmonary fibrosis. Theranostics 12(14):6057–6068. https://doi.org/10.7150/thno.72328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ et al (2012) Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med 186(8):740–751. https://doi.org/10.1164/rccm.201201-0084OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mei S, Tang R, Hu Y, Feng J, Xu Q, Zhou Y, Zhong H, Gao Y, He Z, Xing S (2023) Integrin β3 mediates Sepsis and Mechanical Ventilation-Associated Pulmonary Fibrosis through Glycometabolic Reprogramming. Lab Invest 103(1):100021. https://doi.org/10.1016/j.labinv.2022.100021

    Article  PubMed  Google Scholar 

  31. Tatsukawa H, Hitomi K (2021) Role of Transglutaminase 2 in cell death, survival, and fibrosis. Cells 10(7). https://doi.org/10.3390/cells10071842

  32. Bhedi CD, Nasirova S, Toksoz D, Warburton RR, Morine KJ, Kapur NK, Galper JB, Preston IR, Hill NS, Fanburg BL, Penumatsa KC (2020) Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. Faseb j 34(1):930–944. https://doi.org/10.1096/fj.201902155R

    Article  CAS  PubMed  Google Scholar 

  33. Humphreys BD (2018) Mechanisms of Renal Fibrosis. Annu Rev Physiol 80:309–326. https://doi.org/10.1146/annurev-physiol-022516-034227

    Article  CAS  PubMed  Google Scholar 

  34. Cui X, Shi E, Li J, Li Y, Qiao Z, Wang Z, Liu M, Tang W, Sun Y, Zhang Y et al (2022) GPR87 promotes renal tubulointerstitial fibrosis by accelerating glycolysis and mitochondrial injury. Free Radic Biol Med 189:58–70. https://doi.org/10.1016/j.freeradbiomed.2022.07.004

    Article  CAS  PubMed  Google Scholar 

  35. Sun YB, Qu X, Caruana G, Li J (2016) The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 92(3):102–107. https://doi.org/10.1016/j.diff.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  36. Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holthöfer H, Zaoui P, Pinel N, Cordonnier DJ, Gilbert RE (2002) Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 45(11):1572–1576. https://doi.org/10.1007/s00125-002-0946-y

    Article  CAS  PubMed  Google Scholar 

  37. Wei Q, Su J, Dong G, Zhang M, Huo Y, Dong Z (2019) Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Ren Physiol 316(6):F1162–f1172. https://doi.org/10.1152/ajprenal.00422.2018

    Article  CAS  Google Scholar 

  38. Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM, Welgus HG, Parks WC (1998) Matrilysin expression and function in airway epithelium. J Clin Invest 102(7):1321–1331. https://doi.org/10.1172/jci1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cabrera S, Maciel M, Hernández-Barrientos D, Calyeca J, Gaxiola M, Selman M, Pardo A (2019) Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am J Physiol Lung Cell Mol Physiol 316(5):L961. https://doi.org/10.1152/ajplung.00455.2017

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Zhou Y, Tan R, Xiong M, He W, Fang L, Wen P, Jiang L, Yang J (2010) Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Ren Physiol 299(5):F973–982. https://doi.org/10.1152/ajprenal.00216.2010

    Article  CAS  Google Scholar 

  41. Wang H, Gao M, Li J, Sun J, Wu R, Han D, Tan J, Wang J, Wang B, Zhang L, Dong Y (2019) MMP-9-positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol (Oxf) 227(2):e13317. https://doi.org/10.1111/apha.13317

    Article  CAS  PubMed  Google Scholar 

  42. Ren Y, Wang J, Guo W, Chen J, Wu X, Gu S, Xu L, Wu Z, Wang Y (2022) Renoprotection of Microcystin-RR in Unilateral Ureteral obstruction-Induced Renal Fibrosis: targeting the PKM2-HIF-1α pathway. Front Pharmacol 13. https://doi.org/10.3389/fphar.2022.830312

  43. Takagaki Y, Shi S, Katoh M, Kitada M, Kanasaki K, Koya D (2019) Dipeptidyl peptidase-4 plays a pathogenic role in BSA-induced kidney injury in diabetic mice. Sci Rep 9(1):7519. https://doi.org/10.1038/s41598-019-43730-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ouyang X, Han SN, Zhang JY, Dioletis E, Nemeth BT, Pacher P, Feng D, Bataller R, Cabezas J, Stärkel P et al (2018) Digoxin suppresses pyruvate kinase M2-Promoted HIF-1α transactivation in Steatohepatitis. Cell Metab 27(2):339–350. https://doi.org/10.1016/j.cmet.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Srivastava SP, Li J, Kitada M, Fujita H, Yamada Y, Goodwin JE, Kanasaki K, Koya D (2018) SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death Dis 9(10):997. https://doi.org/10.1038/s41419-018-1057-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kocak MZ, Aktas G, Atak BM, Duman TT, Yis OM, Erkus E, Savli H (2020) Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest 50(3):e13206. https://doi.org/10.1111/eci.13206

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684–696. https://doi.org/10.1038/nrneph.2011.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V et al (2019) Characterization of Glycolytic Enzymes and pyruvate kinase M2 in type 1 and 2 Diabetic Nephropathy. Diabetes Care 42(7):1263–1273. https://doi.org/10.2337/dc18-2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qi W, Li Q, Gordin D, King GL (2018) Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism. J Mol Med (Berl) 96(5):373–381. https://doi.org/10.1007/s00109-018-1630-0

    Article  CAS  PubMed  Google Scholar 

  50. Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ et al (2017) Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 23(6):753–762. https://doi.org/10.1038/nm.4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JH, Kim BK, Moon KC, Hong HK, Lee HS (2003) Activation of the TGF-beta/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int 64(5):1715–1721. https://doi.org/10.1046/j.1523-1755.2003.00288.x

    Article  CAS  PubMed  Google Scholar 

  52. Sun M, Kisseleva T (2015) Reversibility of liver fibrosis. Clin Res Hepatol Gastroenterol 39(0 1):S60–63. https://doi.org/10.1016/j.clinre.2015.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  53. Campana L, Iredale JP (2017) Regression of liver fibrosis. Semin Liver Dis 37(1):1–10. https://doi.org/10.1055/s-0036-1597816

    Article  PubMed  Google Scholar 

  54. Tacke F, Zimmermann HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60(5):1090–1096. https://doi.org/10.1016/j.jhep.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  55. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4(1):177–197. https://doi.org/10.1002/cphy.c130024

    Article  PubMed  PubMed Central  Google Scholar 

  56. Griffiths HR, Gao D, Pararasa C (2017) Redox regulation in metabolic programming and inflammation. Redox Biol 12:50–57. https://doi.org/10.1016/j.redox.2017.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verdeguer F, Aouadi M (2017) Macrophage heterogeneity and energy metabolism. Exp Cell Res 360(1):35–40. https://doi.org/10.1016/j.yexcr.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  58. Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei S, Liu M, Wang P, Qiu J, Zhang L et al (2022) FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut 71(12):2539–2550. https://doi.org/10.1136/gutjnl-2021-325150

    Article  CAS  PubMed  Google Scholar 

  59. Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C et al (2017) SIRT5 desuccinylates and activates pyruvate kinase M2 to Block macrophage IL-1β production and to prevent DSS-Induced Colitis in mice. Cell Rep 19(11):2331–2344. https://doi.org/10.1016/j.celrep.2017.05.065

    Article  CAS  PubMed  Google Scholar 

  60. Corcoran SE, O’Neill LA (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Invest 126(10):3699–3707. https://doi.org/10.1172/jci84431

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fan N, Zhang X, Zhao W, Zhao J, Luo D, Sun Y, Li D, Zhao C, Wang Y, Zhang H, Rong J (2022) Covalent inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease. Int J Biol Sci 18(14):5260–5275. https://doi.org/10.7150/ijbs.73890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG et al (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80. https://doi.org/10.1016/j.cmet.2014.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bouter A, Carmeille R, Gounou C, Bouvet F, Degrelle SA, Evain-Brion D, Brisson AR (2015) Review: Annexin-A5 and cell membrane repair. Placenta 36(Suppl 1):43–49. https://doi.org/10.1016/j.placenta.2015.01.193

    Article  CAS  Google Scholar 

  64. Xu F, Guo M, Huang W, Feng L, Zhu J, Luo K, Gao J, Zheng B, Kong LD, Pang T et al (2020) Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol 36. https://doi.org/10.1016/j.redox.2020.101634

  65. Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J (2017) Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging 9(10):2069–2082. https://doi.org/10.18632/aging.101302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wake K (1971) Sternzellen in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132(4):429–462. https://doi.org/10.1002/aja.1001320404

    Article  CAS  PubMed  Google Scholar 

  67. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492. https://doi.org/10.1002/cphy.c120035

    Article  PubMed  Google Scholar 

  68. Zheng D, Jiang Y, Qu C, Yuan H, Hu K, He L, Chen P, Li J, Tu M, Lin L et al (2020) Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis. Am J Pathol 190(11):2267–2281. https://doi.org/10.1016/j.ajpath.2020.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Wu H, Mei Y, Ding X, Yang X, Li C, Deng M, Gong J (2017) Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma. Sci Rep 7(1):15294. https://doi.org/10.1038/s41598-017-14813-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deng J, Huang Q, Wang Y, Shen P, Guan F, Li J, Huang H, Shi C (2014) Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 454(2):328–334. https://doi.org/10.1016/j.bbrc.2014.10.076

    Article  CAS  PubMed  Google Scholar 

  71. Schiattarella GG, Hill JA (2015) Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131(16):1435–1447. https://doi.org/10.1161/circulationaha.115.013894

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eid RA, Alkhateeb MA, El-Kott AF, Eleawa SM, Zaki MSA, Alaboodi SA, Salem Al-Shudiefat AA, Aldera H, Alnamar NM, Alassiri M, Khalil MA (2019) A high-fat diet rich in corn oil induces cardiac fibrosis in rats by activating JAK2/STAT3 and subsequent activation of ANG II/TGF-1β/Smad3 pathway: the role of ROS and IL-6 trans-signaling. J Food Biochem 43(8):e12952. https://doi.org/10.1111/jfbc.12952

    Article  CAS  PubMed  Google Scholar 

  73. Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ et al (2017) Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127(10):3770–3783. https://doi.org/10.1172/jci94753

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schlüter KD, Böhm M (2002) Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 283(3):H1253–1262. https://doi.org/10.1152/ajpheart.00578.2001

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Zhang L, Fan X, Yang W, Yu B, Kou J, Li F (2019) Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed Pharmacother 113. https://doi.org/10.1016/j.biopha.2019.108780

  76. Xiong PY, Tian L, Dunham-Snary KJ, Chen KH, Mewburn JD, Neuber-Hess M, Martin A, Dasgupta A, Potus F, Archer SL (2018) Biventricular increases in mitochondrial fission mediator (MiD51) and proglycolytic pyruvate kinase (PKM2) isoform in Experimental Group 2 Pulmonary hypertension-novel mitochondrial abnormalities. Front Cardiovasc Med 5(195). https://doi.org/10.3389/fcvm.2018.00195

  77. Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR et al (2017) Identification of MicroRNA-124 as a Major Regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and pyruvate kinase M2. Circulation 136(25):2451–2467. https://doi.org/10.1161/circulationaha.117.028034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D’Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA et al (2017) Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate kinase muscle Axis. Circulation 136(25):2468–2485. https://doi.org/10.1161/circulationaha.117.028069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268. https://doi.org/10.1111/j.1365-2133.2010.09804.x

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Li L, Liu Y, Liu ZR (2016) PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen 24(2):328–336. https://doi.org/10.1111/wrr.12411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lei R, Zhang S, Wang Y, Dai S, Sun J, Zhu C (2019) Metformin inhibits epithelial-to-mesenchymal transition of keloid fibroblasts via the HIF-1α/PKM2 signaling pathway. Int J Med Sci 16(7):960–966. https://doi.org/10.7150/ijms.32157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li J, Yin Y, Zhang E, Gui M, Chen L, Li J (2023) Peptide deregulated in hypertrophic scar-1 alleviates hypertrophic scar fibrosis by targeting focal adhesion kinase and pyruvate kinase M2 and remodeling the metabolic landscape. Int J Biol Macromol 235. https://doi.org/10.1016/j.ijbiomac.2023.123809

  83. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X (2011) Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30(42):4297–4306. https://doi.org/10.1038/onc.2011.137

    Article  CAS  PubMed  Google Scholar 

  84. Rihan M, Sharma SS (2023) Inhibition of pyruvate kinase M2 (PKM2) by shikonin attenuates isoproterenol-induced acute myocardial infarction via reduction in inflammation, hypoxia, apoptosis, and fibrosis. https://doi.org/10.1007/s00210-023-02593-4. Naunyn Schmiedebergs Arch Pharmacol.

  85. Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, Luo J, Zen K, Yang J (2017) Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Ren Physiol 313(3):F561. https://doi.org/10.1152/ajprenal.00036.2017

    Article  CAS  Google Scholar 

  86. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15(4):300–308. https://doi.org/10.1016/j.semcancer.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  87. Ikeda Y, Noguchi T (1998) Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 273(20):12227–12233. https://doi.org/10.1074/jbc.273.20.12227

    Article  CAS  PubMed  Google Scholar 

  88. Boulos JC, Rahama M, Hegazy MF, Efferth T (2019) Shikonin derivatives for cancer prevention and therapy. Cancer Lett 459:248–267. https://doi.org/10.1016/j.canlet.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  89. He A, Qian L, Yan S, Zhu M, Zhao X, Ma W, Li J, Xu D (2021) Speckle Tracking Echocardiography Verified the Efficacy of Qianyangyuyin Granules in Alleviating Left Ventricular Remodeling in a Hypertensive Rat Model. Evid Based Complement Alternat Med, 2021https://doi.org/10.1155/2021/5862361

  90. Zhang SF, Mao XJ, Jiang WM, Fang ZY (2020) Qian Yang Yu Yin Granule protects against hypertension-induced renal injury by epigenetic mechanism linked to Nicotinamide N-Methyltransferase (NNMT) expression. J Ethnopharmacol 255. https://doi.org/10.1016/j.jep.2020.112738

  91. Qian L, Ren S, Xu Z, Zheng Y, Wu L, Yang Y, Wang Y, Li J, Yan S, Fang Z (2021) Qian Yang Yu Yin Granule improves renal Injury of Hypertension by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback Loop. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.667433

  92. Peixoto JF, Gonçalves-Oliveira LF, Souza-Silva F, Côrtes LMC, Dias-Lopes G, Cardoso FO, Santos RO, Patricio BFC, Nicoletti CD, Lima CGS et al (2023) Development of a microemulsion loaded with epoxy-α-lapachone against Leishmania (Leishmania) amazonensis murine infection. Int J Pharm 636. https://doi.org/10.1016/j.ijpharm.2023.122864

  93. Yang Y, Sheng J, Sheng Y, Wang J, Zhou X, Li W, Kong Y (2023) Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2023.110380

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu M, Xu H, Liu J, Tan X, Wan S, Guo M, Long Y, Xu Y (2021) Metformin and fibrosis: a review of existing evidence and mechanisms. J Diabetes Res 2021(6673525). https://doi.org/10.1155/2021/6673525

  95. Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D (2021) The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig 12(5):697–709. https://doi.org/10.1111/jdi.13478

    Article  CAS  PubMed  Google Scholar 

  96. Fu WY, Xu LH (2006) [Progress in mechanism of microcystin toxicity]. Zhejiang Da Xue Xue Bao Yi Xue Ban 35(3):342–346. https://doi.org/10.3785/j.issn.1008-9292.2006.03.021

    Article  CAS  PubMed  Google Scholar 

  97. Wang J, Xu L, Xiang Z, Ren Y, Zheng X, Zhao Q, Zhou Q, Zhou Y, Xu L, Wang Y (2020) Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206(+) M2-like macrophage polarization. Cell Death Dis 11(2):136. https://doi.org/10.1038/s41419-020-2329-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang J, Ren Y, Zheng X, Kang J, Huang Z, Xu L, Wang Y (2021) Anti-fibrotic effects of low toxic Microcystin-RR on Bleomycin-Induced Pulmonary Fibrosis: a comparison with Microcystin-LR. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.675907

  99. Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM (2019) Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: a review. Food Chem Toxicol 125:106–132. https://doi.org/10.1016/j.fct.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  100. Gao J, Wei T, Huang C, Sun M, Shen W (2020) Sirtuin 3 governs autophagy-dependent glycolysis during angiotensin II-induced endothelial-to-mesenchymal transition. Faseb j 34(12):16645–16661. https://doi.org/10.1096/fj.202001494R

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Key R&D Projects of Jiangsu Province (BE2021694).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. Material preparation and document literature collection were performed by J. L, and K. F. The first draft of the manuscript was written by S. L. and M.C. W. Y. edited and revised manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wei Yuan.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Cao, M., Luo, J. et al. Search progress of pyruvate kinase M2 (PKM2) in organ fibrosis. Mol Biol Rep 51, 389 (2024). https://doi.org/10.1007/s11033-024-09307-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09307-w

Keywords

Navigation