Skip to main content

Advertisement

Log in

The role of NLRP6 in the development and progression of neurological diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1β (IL-1β). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C (2020) The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 19(3):255–265. https://doi.org/10.1016/S1474-4422(19)30411-9

    Article  PubMed  Google Scholar 

  2. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. https://doi.org/10.1016/S1474-4422(12)70104-7

    Article  CAS  PubMed  Google Scholar 

  3. Mo Y, Sun YY, Liu KY (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15(8):1388–1396. https://doi.org/10.4103/1673-5374.274331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shao S, Xu CB, Chen CJ, Shi GN, Guo QL, Zhou Y, Wei YZ, Wu L, Shi JG, Zhang TT (2021) Divanillyl sulfone suppresses NLRP3 inflammasome activation via inducing mitophagy to ameliorate chronic neuropathic pain in mice. J Neuroinflammation 18(1):142. https://doi.org/10.1186/s12974-021-02178-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang E, Yi MH, Ko Y, Kim HW, Seo JH, Lee YH, Lee W, Kim DW (2013) Expression of LC3 and Beclin 1 in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Brain Res 1519:31–39. https://doi.org/10.1016/j.brainres.2013.04.055

    Article  CAS  PubMed  Google Scholar 

  6. Vande Walle L, Lamkanfi M, Pyroptosis (2016) Curr Biol 26(13):R568–R572

    Article  CAS  PubMed  Google Scholar 

  7. Rao X, Zhou X, Wang G, Jie X, Xing B, Xu Y, Chen Y, Li J, Zhu K, Wu Z, Wu G, Wu C, Zhou R (2022) NLRP6 is required for cancer-derived exosome-modified macrophage M2 polarization and promotes metastasis in small cell lung cancer. Cell Death Dis 13(10):891. https://doi.org/10.1038/s41419-022-05336-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Gan H, Tan J, Wang T, Zhao J, Zhao Y (2021) BRCC3 promotes activation of the NLRP6 inflammasome following cerebral ischemia/reperfusion (I/R) injury in rats. Neurosci Lett 756:135954. https://doi.org/10.1016/j.neulet.2021.135954

    Article  CAS  PubMed  Google Scholar 

  10. Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530(1–3):73–78. https://doi.org/10.1016/s0014-5793(02)03416-6

    Article  CAS  PubMed  Google Scholar 

  11. Ghimire L, Paudel S, Jin L, Jeyaseelan S (2020) The NLRP6 inflammasome in health and disease. Mucosal Immunol 13(3):388–398. https://doi.org/10.1038/s41385-020-0256-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen C, Lu A, Xie WJ, Ruan J, Negro R, Egelman EH, Fu TM, Wu H (2019) Molecular mechanism for NLRP6 inflammasome assembly and activation. Proc Natl Acad Sci U S A 116(6):2052–2057. https://doi.org/10.1073/pnas.1817221116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li R, Zhu S (2020) NLRP6 inflammasome. Mol Aspects Med 76:100859. https://doi.org/10.1016/j.mam.2020.100859

    Article  CAS  PubMed  Google Scholar 

  14. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757. https://doi.org/10.1016/j.cell.2011.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin J, Sheng B, Yang K, Sun L, Xiao W, Yang H (2019) The protective roles of NLRP6 in intestinal epithelial cells. Cell Prolif 52(2):e12555. https://doi.org/10.1111/cpr.12555

    Article  CAS  PubMed  Google Scholar 

  16. Zheng X, Liu L, Meng G, Zhu S, Zhou R, Jiang W (2021) IL-18 maintains the homeostasis of mucosal immune system via inflammasome-independent but microbiota-dependent manner. Sci Bull (Beijing) 66(20):2115–2123. https://doi.org/10.1016/j.scib

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zambetti LP, Mortellaro A (2014) NLRPs, microbiota, and gut homeostasis: unravelling the connection. J Pathol 233(4):321–330. https://doi.org/10.1002/path.4357

    Article  CAS  PubMed  Google Scholar 

  18. Angosto-Bazarra D, Molina-López C, Pelegrín P (2022) Physiological and pathophysiological functions of NLRP6: pro- and anti-inflammatory roles. Commun Biol 5(1):524. https://doi.org/10.1038/s42003-022-03491-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sateriale A, Gullicksrud JA, Engiles JB, McLeod BI, Kugler EM, Henao-Mejia J, Zhou T, Ring AM, Brodsky IE, Hunter CA, Striepen B (2021) The intestinal parasite Cryptosporidium is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proc Natl Acad Sci U S A 118(2):e2007807118. https://doi.org/10.1073/pnas.2007807118

    Article  CAS  PubMed  Google Scholar 

  20. Medina-Larqué AS, Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy É, Marette A, Roy D, Jacques H, Desjardins Y (2022) Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front Immunol 13:871080. https://doi.org/10.3389/fimmu.2022.871080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mainz RE, Albers S, Haque M, Sonntag R, Treichel NS, Clavel T, Latz E, Schneider KM, Trautwein C, Otto T (2022) NLRP6 Inflammasome modulates Disease Progression in a chronic-plus-binge mouse model of alcoholic liver disease. Cells 11(2):182. https://doi.org/10.3390/cells11020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu D, Wu X, Peng L, Chen T, Huang Q, Wang Y, Ye C, Peng Y, Hu D, Fang R (2021) The critical role of NLRP6 inflammasome in Streptococcus pneumoniae infection in Vitro and in vivo. Int J Mol Sci 22(8):3876. https://doi.org/10.3390/ijms22083876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valiño-Rivas L, Cuarental L, Nuñez G, Sanz AB, Ortiz A, Sanchez-Niño MD (2020) Loss of NLRP6 expression increases the severity of acute kidney injury. Nephrol Dial Transpl 35(4):587–598. https://doi.org/10.1093/ndt/gfz169

    Article  CAS  Google Scholar 

  24. Qiao J, Sun Z, Liang D, Li H (2020) Lactobacillus salivarius alleviates inflammation via NF-κB signaling in ETEC K88-induced IPEC-J2 cells. J Anim Sci Biotechnol 11:76. https://doi.org/10.1186/s40104-020-00488-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen GY, Liu M, Wang F, Bertin J, Núñez G (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186(12):7187–7194. https://doi.org/10.4049/jimmunol.1100412

    Article  CAS  PubMed  Google Scholar 

  26. Lupfer C, Kanneganti TD (2013) Unsolved mysteries in NLR Biology. Front Immunol 4:285. https://doi.org/10.3389/fimmu.2013.00285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Próchnicki T, Latz E (2017) Inflammasomes on the crossroads of Innate Immune Recognition and Metabolic Control. Cell Metab 26(1):71–93. https://doi.org/10.1016/j.cmet.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  28. He M, Fan J, Zhou R, Gao G, Li R, Zuo Y, Li B, Li Y, Sun T (2022) NLRP3/Caspase-1-Mediated pyroptosis of astrocytes Induced by Antipsychotics is inhibited by a histamine H1 receptor-selective agonist. Front Aging Neurosci 14:847561. https://doi.org/10.3389/fnagi.2022.847561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng S, Fox D, Man SM (2018) Mechanisms of Gasdermin Family members in Inflammasome Signaling and Cell Death. J Mol Biol 430:3068–3080 (18 Pt B). https://doi.org/10.1016/j.jmb.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  30. Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E (2015) Microbiota-modulated metabolites shape the Intestinal Microenvironment by regulating NLRP6 Inflammasome Signaling. Cell 163(6):1428–1443. https://doi.org/10.1016/j.cell.2015.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu WL, Zhang L, Song DZ, Yi XW, Xu WZ, Ye L, Huang DM (2019) NLRP6 suppresses the inflammatory response of human periodontal ligament cells by inhibiting NF-κB and ERK signal pathways. Int Endod J 52(7):999–1009. https://doi.org/10.1111/iej.13091

    Article  CAS  PubMed  Google Scholar 

  32. Ydens E, Demon D, Lornet G, De Winter V, Timmerman V, Lamkanfi M, Janssens S (2015) Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes. J Neuroinflammation 12:143. https://doi.org/10.1186/s12974-015-0367-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horowitz MA, Cattaneo A, Cattane N, Lopizzo N, Tojo L, Bakunina N, Musaelyan K, Borsini A, Zunszain PA, Pariante CM (2020) Glucocorticoids prime the inflammatory response of human hippocampal cells through up-regulation of inflammatory pathways. Brain Behav Immun 87:777–794. https://doi.org/10.1016/j.bbi.2020.03.012

    Article  CAS  PubMed  Google Scholar 

  34. Meng C, Zhang J, Zhang L, Wang Y, Li Z, Zhao J (2019) Effects of NLRP6 in cerebral Ischemia/Reperfusion (I/R) Injury in rats. J Mol Neurosci 69(3):411–418. https://doi.org/10.1007/s12031-019-01370-4

    Article  CAS  PubMed  Google Scholar 

  35. Nie H, Hu Y, Guo W, Wang W, Yang Q, Dong Q, Tang Y, Li Q, Tang Z (2020) Mir-331-3p inhibits inflammatory response after Intracerebral Hemorrhage by directly targeting NLRP6. Biomed Res Int 2020:6182464. https://doi.org/10.1155/2020/6182464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Jiang N, Zhang L, Meng C, Zhao J, Wu J (2020) NLRP6 expressed in astrocytes aggravates neurons injury after OGD/R through activating the inflammasome and inducing pyroptosis. Int Immunopharmacol 80:106183. https://doi.org/10.1016/j.intimp.2019.106183

    Article  CAS  PubMed  Google Scholar 

  37. Xiao H, Chen H, Jiang R, Zhang L, Wang L, Gan H, Jiang N, Zhao J, Zhai X, Liang P (2020) NLRP6 contributes to inflammation and brain injury following intracerebral haemorrhage by activating autophagy. J Mol Med (Berl) 98(9):1319–1331. https://doi.org/10.1007/s00109-020-01962-3

    Article  CAS  PubMed  Google Scholar 

  38. Yu R, Wen S, Wang Q, Wang C, Zhang L, Wu X, Li J, Kong L (2021) Mulberroside a repairs high fructose diet-induced damage of intestinal epithelial and blood-brain barriers in mice: a potential for preventing hippocampal neuroinflammatory injury. J Neurochem 157(6):1979–1991. https://doi.org/10.1111/jnc.15242

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Cao F, Xiong Y, Zhou H (2021) SP1 transcriptionally activates NLRP6 inflammasome and induces immune evasion and radioresistance in glioma cells. Int Immunopharmacol 98:107858. https://doi.org/10.1016/j.intimp.2021.107858

    Article  CAS  PubMed  Google Scholar 

  40. Wang PF, Li ZG, Zhang Y, Ju XH, Liu XW, Zhou AM, Chen J (2017) NLRP6 Inflammasome ameliorates Brain Injury after Intracerebral Hemorrhage. Front Cell Neurosci 11:206. https://doi.org/10.3389/fncel.2017.00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J (2023) Autophagy regulates inflammation in intracerebral hemorrhage: enemy or friend? Front Cell Neurosci 16:1036313. https://doi.org/10.3389/fncel.2022.1036313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107(2):234–256. https://doi.org/10.1016/j.neuron.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pandey GN, Zhang H, Sharma A, Ren X (2021) Innate immunity receptors in depression and suicide: upregulated NLRs containing pyrin (NLRPs) and hyperactive inflammasomes in the postmortem brains of people who were depressed and died by suicide. J Psychiatry Neurosci 46(5):E538–E547. https://doi.org/10.1503/jpn.210016

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tang G, Yao J, Shen R, Ji A, Ma K, Cong B, Wang F, Zhu L, Wang X, Ding Y, Zhang B (2018) Reduced inflammatory factor expression facilitates recovery after sciatic nerve injury in TLR4 mutant mice. Int Immunopharmacol 55:77–85. https://doi.org/10.1016/j.intimp.2017.12.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81871019, 81671286) and Graduate Research Innovation Project of Chongqing (CYS23322).

Author information

Authors and Affiliations

Authors

Contributions

YM. wrote the main manuscript text; JQ. and MY. checked the draft; YX and LH made the data curation; JR and YR collected the information. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weihua Yu.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Song, J., Yan, M. et al. The role of NLRP6 in the development and progression of neurological diseases. Mol Biol Rep 51, 351 (2024). https://doi.org/10.1007/s11033-024-09293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09293-z

Keywords

Navigation