Skip to main content
Log in

Antennal transcriptome analysis of Psyttalia incisi (silvestri) (Hymenoptera: Braconidae): identification and tissue expression profiling of candidate odorant-binding protein genes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Olfaction plays an important role in host-seeking by parasitoids, as they can sense chemical signals using sensitive chemosensory systems. Psyttalia incisi (Silvestri) (Hymenoptera: Braconidae) is the dominant parasitoid of Bactrocera dorsalis (Hendel) in fruit-producing regions of southern China. The olfactory behavior of P. incisi has been extensively studied; however, the chemosensory mechanisms of this species are not fully understood.

Results

Bioinformatics analysis of 64,515 unigenes from the antennal transcriptome of both male and female adults P. incisi identified 87 candidate chemosensory genes. These included 13 odorant-binding proteins (OBPs), seven gustatory receptors (GRs), 55 odorant receptors (ORs), 10 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs). Phylogenetic trees were constructed to predict evolutionary relationships between these chemosensory genes in hymenopterans. Moreover, the tissue expression profiles of 13 OBPs were analyzed by quantitative real-time PCR, revealing high expression of seven OBPs (1, 3, 6, 7, 8, 12, and 13) in the antennae.

Conclusion

This study represents the first identification of chemosensory genes and the determination of their expression patterns in different tissues of P. incisi. These results contribute to a better understanding of the function of the chemosensory system of this parasitoid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Abbreviations

OBPs:

Odorant-binding proteins

GRs:

Gustatory receptors

ORs:

Odorant receptors

IRs:

Ionotropic receptors

SNMPs:

Sensory neuron membrane proteins

CSPs:

Chemosensory proteins

PBPs:

Pheromone-binding proteins

GOBPs:

General odorant-binding proteins

NCBI:

NR-NCBI non-redundant

NCBI:

NT-NCBI nucleotide

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

Pfam:

Protein Family

KOG/COG:

EuKaryotic Ortholog Groups/Clusters of Orthologous Groups

ORFs:

Open reading frames

TMDs:

Transmembrane domains

pI:

Theoretical isoelectric point

Mw:

Molecular weight

TMDs:

Transmembrane domains

References

  1. Schmidt HR, Benton R (2020) Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol 10:200252. https://doi.org/10.1098/rsob.200252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwon HW, Lu T, Rutzler M, Zwiebel LJ (2006) Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci USA 103:13526–13531. https://doi.org/10.1073/pnas.0601107103

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162. https://doi.org/10.1016/j.cell.2008.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391. https://doi.org/10.1146/annurev-ento-120811-153635

    Article  CAS  PubMed  Google Scholar 

  5. Liu GX, Ma HM, Xie HY, Xuan N, Guo X, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11:e0154706. https://doi.org/10.1371/journal.pone.0154706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163. https://doi.org/10.1038/293161a0

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Younus F, Chertemps T, Pearce SL, Pandey G, Bozzolan F, Coppin CW, Russell RJ, Maibeche-Coisne M, Oakeshott JG (2014) Identification of candidate odorant degrading gene enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochem Mol Biol 53:30–43. https://doi.org/10.1016/j.ibmb.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  8. Swarup S, Williams TI, Anholt RRH (2011) Functional dissection of odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 10:648–657. https://doi.org/10.1111/j.1601-183X.2011.00704.x

    Article  CAS  PubMed  Google Scholar 

  9. Hall SE, Floriano WB, Vaidehi N, Goddard WA (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 29:595–616. https://doi.org/10.1093/chemse/bjh063

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YX, Wang WL, Li MY, Li SG, Liu S (2017) Identification of putative carboxylesterase and aldehyde oxidase genes from the antennae of the rice leaffolder, Cnaphalocrocis Medinalis (Lepidoptera: Pyralidae). J Asia-Pac Entomol 20:907–913. https://doi.org/10.1016/j.aspen.2017.06.001

    Article  Google Scholar 

  11. Durand N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat D, Debernard S, Chertemps T, Maïbèche-Coisne M (2011) Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE 6:e29147. https://doi.org/10.1371/journal.pone.0029147

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676. https://doi.org/10.1007/s00018-005-5607-0

    Article  CAS  PubMed  Google Scholar 

  13. Peng G, Leal WS (2001) Identification and cloning of a pheromone-binding protein from the oriental beetle, Exomala Orientalis. J Chem Ecol 27:2183–2192. https://doi.org/10.1023/a:1012270602288

    Article  CAS  PubMed  Google Scholar 

  14. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369. https://doi.org/10.1101/gr.239402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou JJ, Robertson G, He XL, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545. https://doi.org/10.1016/j.jmb.2009.04.015

    Article  CAS  PubMed  Google Scholar 

  16. Venthur H, Mutis A, Zhou JJ, Quiroz A (2014) Ligand binding and homology modelling of insect odorant-binding proteins. Physiol Entomol 39:183–198. https://doi.org/10.1111/phen.12066

    Article  CAS  Google Scholar 

  17. Honson NS, Gong Y, Plettner E (2005) Chapter nine-structure and function of insect odorant and pheromone-binding proteins (OBPs and PBPs) and chemosensory-specific proteins (CSPs). Recent Adv Phytochem 39:227–268. https://doi.org/10.1016/S0079-9920(05)80010-3

    Article  CAS  Google Scholar 

  18. Wu JD, Shen ZC, Hua HQ, Zhang F, Li YX (2017) Identification and sex expression profiling of odorant-binding protein genes in Trichogramma japonicum (Hymenoptera: Trichogrammatidae) using RNA-Seq. Appl Entomol Zool 52:623–633. https://doi.org/10.1007/s13355-017-0516-x

    Article  CAS  Google Scholar 

  19. Nie XP, Li QL, Xu C, Li DZ, Zhang Z, Wang MQ, Zhou AM, Li SQ (2018) Antennal transcriptome and odorant binding protein expression profiles of an invasive mealybug and its parasitoid. J Appl Entomol 142:149–161. https://doi.org/10.1111/jen.12417

    Article  CAS  Google Scholar 

  20. Zhang ZK, Zhang Y, Wu SY, Lei ZR (2017) Recent advances in odorant binding proteins of insects. J Environ Entomol 39:713–720. https://doi.org/10.3969/j.issn.1674-0858.2017.02.29

    Article  Google Scholar 

  21. Larter NK, Sun JS, Carlson JR (2016) Organization and function of Drosophila odorant binding proteins. Elife 5:e20242. https://doi.org/10.7554/eLife.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49. https://doi.org/10.1016/0896-6273(94)90150-3

    Article  CAS  PubMed  Google Scholar 

  23. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307. https://doi.org/10.1016/0965-1748(95)00096-8

    Article  CAS  PubMed  Google Scholar 

  24. Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY, Zhang YJ (2015) Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci Rep 5:13800. https://doi.org/10.1038/srep13800

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. He YY, Wang K, Zhang YJ, Wu QJ, Wang SI (2019) Research progress of olfactory protein of parasitoid wasps. J Environ Entomol 41:1232–1243. http://doi.org/CNKI:SUN:KCTD 0.2019-06-012

    Google Scholar 

  26. Xu C, Li QL, Qu XB, Chen J, Zhou AM (2020) Ant-hemipteran association decreases parasitism of Phenacoccus solenopsis by endoparasitoid Aenasius bambawalei. Ecol Entomol 45:290–299. https://doi.org/10.1111/een.12797

    Article  Google Scholar 

  27. Liu H, Zhang DJ, Xu YJ, Wang L, Cheng DF, Qi YX, Zeng L, Lu YY (2019) Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J Integr Agric 18:771–787. https://doi.org/10.1016/s2095-3119(18)62015-5

    Article  CAS  Google Scholar 

  28. Díaz-Fleischer F, Pérez-Staples D, Cabrera-Mireles H, Montoya P, Liedo P (2017) Novel insecticides and bait stations for the control of Anastrepha fruit flies in mango orchards. J Pest Sci 90:865–872. https://doi.org/10.1007/s10340-017-0834-3

    Article  Google Scholar 

  29. Lin J, Yang DQ, Hao XX, Cai PM, Guo YQ, Shi S, Liu CM, Ji QE (2021) Effect of cold storage on the quality of Psyttalia incisi (Hymenoptera: Braconidae), a larval parasitoid of Bactrocera dorsalis (Diptera: Tephritidae). Insects 12:558. https://doi.org/10.3390/insects12060558

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang JQ, Cai PM, Chen J, Zhang HH, Wang C, Xiang HJ, Wu J, Yang YC, Chen JH, Ji QE, Song DB (2018) Interspecific competition between Fopius arisanus and Psyttalia incisi (Hymenoptera: Braconidae), parasitoids of Bactrocera dorsalis (Diptera: Tephritidae). Biol Control 121:183–189. https://doi.org/10.1016/j.biocontrol.2018.02.003

    Article  Google Scholar 

  31. Liang GH, Wu Y, Chen JH (2006) Seasonal incidence of Bactrocera dorsalis and its parasitoids in the field. J Southwest Forestry College 26:72–74. https://doi.org/10.3969/j.issn.2095-1914.2006.06.019

    Article  Google Scholar 

  32. Carmichael AE, Wharton RA, Clarke AR (2005) Opiine parasitoids (Hymenoptera: Braconidae) of tropical fruit flies (Diptera: Tephritidae) of the Australian and South Pacific region. Bull Entomol Res 95:545–569. https://doi.org/10.1079/ber2005383

    Article  CAS  PubMed  Google Scholar 

  33. Bokonon-Ganta AH, McQuate GT, Messing RH (2007) Natural establishment of a parasitoid complex on Bactrocera latifrons (Diptera: Tephritidae) in Hawaii. Biol Control 42:365–373. https://doi.org/10.1016/j.biocontrol.2007.05.019

    Article  Google Scholar 

  34. Vargas RI, Stark JD, Uchida GK, Purcell M (1993) Opiine parasitoids (Hymenoptera: Braconidae) of oriental fruit fly (Diptera: Tephritidae) on Kauai Island, Hawaii: is land wide relative abundance and parasitism rates in wild and orchard guava habitats. Environ Entomol 22:246–253. https://doi.org/10.1093/ee/22.1.246

    Article  Google Scholar 

  35. Gu XH, Cai PM, Yang YC, Yang QY, Yao MY, Idrees A, Ji QG, Yang JQ, Chen JH (2018) The response of four braconid parasitoid species to methyl eugenol: optimization of a biocontrol tactic to suppress Bactrocera dorsalis. Biol Control 122:101–108. https://doi.org/10.1016/j.biocontrol.2018.04.002

    Article  CAS  Google Scholar 

  36. John DS, Tim TYW, Roge RIV, Ronald KT (1992) Survival, longevity, and reproduction of Tephritid fruit fly parasitoids (Hymenoptera: Braconidae) reared from fruit flies exposed to Azadirachtin. J Econ Entomol 85:1125–1129. https://doi.org/10.1093/jee/85.4.1125

    Article  Google Scholar 

  37. Bautista RC, Harris EJ (1997) Effects of multiparasitism on the parasitization behavior and progeny development of oriental fruit fly parasitoids (Hymenoptera: Braconidae). J Econ Entomol 90:757–764. https://doi.org/10.1093/jee/90.3.757

    Article  Google Scholar 

  38. Ramadan MM, Wong TTY, Wong MA (1991) Influence of parasitoid size and age on male mating success of opiinae (Hymenoptera: Braconidae), larval parasitoids of fruit flies (Diptera: Tephritidae). Biol Control 1:248–255. https://doi.org/10.1016/1049-9644(91)90074-A

    Article  Google Scholar 

  39. Vargas RI, Stark JD, Prokopy RJ, Green TA (1991) Response of oriental fruit fly (Diptera: Tephritidae) and associated parasitoids (Hymenoptera: Braconidae) to different-color spheres. J Econ Entomol 84:1503–1507. https://doi.org/10.1093/jee/84.5.1503

    Article  Google Scholar 

  40. Shariff S, Ibrahim NJ, Md-Zain BM, Idris AB, Suhana Y, Roff MN, Yaakop S (2014) Multiplex PCR in determination of Opiinae parasitoids of fruit flies, Bactrocera sp., infesting star fruit and guava. J Insect Sci 14:7. https://doi.org/10.1093/jis/14.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang DQ, Hao XX, Jiang LL, Chou TL, Lin X, Yue GQ, Xiao K, Lin J, Ji QE, Cai PM (2022) The complete mitochondrial genome of Psyttalia incisi (Silvestri, 1916) (Hymenoptera: Braconidae). Mitochondrial DNA B 7:1038–1040. https://doi.org/10.1080/23802359.2022.2081942

    Article  Google Scholar 

  42. Cai PM, Song YZ, Huo D, Lin J, Zhang HM, Zhang ZH, Xiao CM, Huang FM, Ji QG (2020) Chemical cues induced from fly-oviposition mediate the host-seeking behaviour of Fopius Arisanus (Hymenoptera: Braconidae), an effective egg parasitoid of Bactrocera dorsalis (Diptera: Tephritidae), within a tritrophic context. Insects 11:231. https://doi.org/10.3390/insects11040231

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chang CL, Vargas RI, Caceres C, Jang E, Cho IK (2006) Development and assessment of a liquid larval diet for Bactrocera dorsalis (Diptera: Tephritidae). Ann Entomol Soc Am 99:1191–1198. https://doi.org/10.1603/0013-8746(2006)99[1191:Daaoal]2.0.Co;2

    Article  Google Scholar 

  44. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–U130. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson I, Brass A (1998) Searching DNA databases for similarities to DNA sequences: when is a match significant? Bioinformatics 14:349–356. https://doi.org/10.1093/bioinformatics/14.4.349

    Article  CAS  PubMed  Google Scholar 

  46. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatic 21:3674–3676. https://doi.org/10.1093/bioinformatics/bti610

    Article  CAS  Google Scholar 

  47. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  48. Fan J, Zhang Q, Xu QX, Xue WX, Han ZL, Sun JR, Chen JL (2018) Differential expression analysis of olfactory genes based on a combination of sequencing platforms and behavioral investigations in Aphidius gifuensis. Front Physiol 9:1679. https://doi.org/10.3389/fphys.2018.01679

    Article  PubMed  PubMed Central  Google Scholar 

  49. Robertson HM, Waterhouse RM, Walden KKO, Ruzzante L, Reijnders MJMF, Coates BS, Legeai F, Gress JC, Biyiklioglu S, Weaver DK, Wanner KW, Budak H (2018) Genome sequence of the wheat stem sawfly, Cephus cinctus, representing an early-branching lineage of the Hymenoptera, illuminates evolution of Hymenopteran chemoreceptors. Genome Biol Evol 10:2997–3011. https://doi.org/10.1093/gbe/evy232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tvedte ES, Walden KKO, McElroy KE, Werren JH, Forbes AA, Hood GR, Logsdon JM, Feder JL, Robertson HM (2019) Genome of the parasitoid wasp Diachasma Alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome Biol Evol 11:2767–2773. https://doi.org/10.1093/gbe/evz205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calla B, Sim SB, Hall B, DeRego T, Liang GH, Geib SM (2015) Transcriptome of the egg parasitoid Fopius arisanus: an important biocontrol tool for Tephritid fruit fly suppression. Gigascience 4:36. https://doi.org/10.1186/s13742-015-0075-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang SN, Shan S, Zheng Y, Peng Y, Lu ZY, Yang YQ, Li RJ, Zhang YJ, Guo YY (2017) Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). Insect Mol Biol 26:420–431. https://doi.org/10.1111/imb.12306

    Article  CAS  PubMed  Google Scholar 

  53. Zhang SA, Zhang YJ, Su HH, Gao XW, Guo YY (2009) Identification and expression pattern of putative odorant-binding proteins and chemosensory proteins in antennae of the Microplitis mediator (Hymenoptera: Braconidae). Chem Senses 34:503–512. https://doi.org/10.1093/chemse/bjp027

    Article  CAS  PubMed  Google Scholar 

  54. Liu JF, Zhao HY, Song YF, Yu YC, Yang MF (2022) A chromosome-level genome assembly of the parasitic wasp Chelonus Formosanus Sonan 1932 (Hymenoptera: Braconidae). Genome Biol Evol 14. https://doi.org/10.1093/gbe/evac006

  55. Wang Q, Gu H, Dorn S (2004) Genetic relationship between olfactory response and fitness in Cotesia glomerata (L). Heredity 92:579–584. https://doi.org/10.1038/sj.hdy.6800464

    Article  CAS  PubMed  Google Scholar 

  56. Robertson HM, Gadau J, Wanner KW, O’Brochta D, Field LM (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia Vitripennis. Insect Mol Biol 19:121–136. https://doi.org/10.1111/j.1365-2583.2009.00979.x

    Article  CAS  PubMed  Google Scholar 

  57. Zhang D, Gao FL, Jakovlic I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355. https://doi.org/10.1111/1755-0998.13096

    Article  PubMed  Google Scholar 

  58. Liu XL, Wu ZR, Liao W, Zhang XQ, Pei YW, Lu M (2023) The binding affinity of two general odorant binding proteins in Spodoptera frugiperda to general volatiles and insecticides. Int J Biol Macromol 252:126338. https://doi.org/10.1016/j.ijbiomac.2023.126338

    Article  CAS  PubMed  Google Scholar 

  59. Liu JT, Xie JX, Khashaveh A, Zhou JJ, Zhang YJ, Dong H, Cong B, Gu SH (2022) Identification and tissue expression profiles of odorant receptor genes in the green peach aphid Myzus persicae. Insects 5:398. https://doi.org/10.3390/insects13050398

    Article  Google Scholar 

  60. He YY, Wang K, Zhang YJ, Wu QJ, Wang SI (2020) Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 112:2291–2301. https://doi.org/10.1016/j.ygeno.2019.12.025

    Article  CAS  PubMed  Google Scholar 

  61. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Feng YQ, Ren LL, Luo YQ, Wang F, Zong SX (2015) Sensilla on antenna, ovipositor and leg of Eriborus Applicitus (Hymenoptera: Ichneumonidae), a parasitoid wasp of Holcocerus Insularis Staudinger (Lepidoptera: Cossidae). Acta Zool 96:253–263. https://doi.org/10.1111/azo.12073

    Article  Google Scholar 

  63. Nishimura O, Brillada C, Yazawa S, Maffei ME, Arimura G (2012) Transcriptome pyrosequencing of the parasitoid wasp Cotesia vestalis: genes involved in the antennal odorant-sensory system. PLoS ONE 7:e50664. https://doi.org/10.1371/journal.pone.0050664

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, von Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604. https://doi.org/10.1016/j.febslet.2007.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang YL, Chen Q, Guo JQ, Li J, Wang JT, Wen M, Zhao HB, Ren BZ (2017) Molecular basis of peripheral olfactory sensing during oviposition in the behavior of the parasitic wasp Anastatus japonicus. Insect Biochem Mol Biol 89:58–70. https://doi.org/10.1016/j.ibmb.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  66. Wu GX, Su RR, Ouyang HL, Zheng XL, Lu W, Wang XY (2022) Antennal transcriptome analysis and identification of olfactory genes in Glenea Cantor Fabricius (Cerambycidae: Lamiinae). Insects 13:553. https://doi.org/10.3390/insects13060553

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tang LD, Liu JM, Liu LH, Yu YH, Zhao HY, Lu W (2020) De novo transcriptome identifies olfactory genes in Diachasmimorpha longicaudata (Ashmead). Genes 11:144. https://doi.org/10.3390/genes11020144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang YT, Xu LB, Duan LQ, Yu LB, Cui J, Cao YY, Zhao YA (2021) Transcriptome sequencing and identification of the Zele chlorophthalmus olfactory related protein gene. Chin J Appl Entomol 58:846–855. https://doi.org/10.7679/j.issn.2095-1353.2021.082

    Article  Google Scholar 

  69. Li ZQ, Zhang S, Luo JY, Wang SB, Wang CY, Lv LM, Dong SL, Cui JJ (2015) Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. Comp Biochem Physiol Part D: Genomics Proteomics 15:28–38. https://doi.org/10.1016/j.cbd.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  70. Qi YX, Teng ZW, Gao LF, Wu SF, Huang J, Ye GY, Fang Q (2015) Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism. Arch Insect Biochem Physiol 88:203–221. https://doi.org/10.1002/arch.21214

    Article  CAS  PubMed  Google Scholar 

  71. Wu ZC, Ye J, Qian JL, Purba ER, Zhang QH, Zhang LW, Mang D (2022) Identification and expression profile of chemosensory receptor genes in Aromia Bungii (Faldermann) antennal transcriptome. Insects 13:96. https://doi.org/10.3390/insects13010096

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu YP, Du LX, Zhu Y, Yang SY, Zhou Q, Wang G, Liu Y (2020) Identification and sex-biased profiles of candidate olfactory genes in the antennal transcriptome of the parasitoid wasp Cotesia vestalis. Comp Biochem Physiol Part D: Genomics Proteomics 34:100657. https://doi.org/10.1016/j.cbd.2020.100657

    Article  CAS  PubMed  Google Scholar 

  73. Zhou CX, Tang YL, Min SF, Wang MQ (2015) Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus Sp. Comp Biochem Physiol Part D: Genomics Proteomics 16:10–19. https://doi.org/10.1016/j.cbd.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  74. Cheng XJ, Cai LJ, Zheng LS, Qin JM, Huang YP, You MS (2016) Cloning, expression profiling and binding characterization of the OBP2 gene in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol Sin 59:365–376. https://doi.org/10.16380/j.kcxb.2016.04.001

    Article  Google Scholar 

  75. Zhang YF, van Loon JJA, Wang CZ (2010) Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in Helicoverpa armigera (Hubner). J Exp Biol 213:2889–2895. https://doi.org/10.1242/jeb.042705

    Article  CAS  PubMed  Google Scholar 

  76. Sheng S, Liao CW, Zheng Y, Zhou Y, Zhou Y, Xu Y, Song WM, He P, Zhang J, Wu FA (2017) Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Comp Biochem Physiol Part D: Genomics Proteomics 22:20–31. https://doi.org/10.1016/j.cbd.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed T, Zhang TT, Wang ZY, He KL, Bai SX (2016) Identification and expression pattern analysis of chemosensory receptor genes in the Macrocentrus cingulum (Hymenoptera: Braconidae) antennae. Eur J Entomol 113:76–83. https://doi.org/10.14411/eje.2016.009

    Article  Google Scholar 

  78. Du LX, Liu Y, Wang GR (2016) Molecular mechanisms of signal transduction in the peripheral olfactory system of insects. Sci Sin Vitae 46:573–583. https://doi.org/10.1360/n052016-00163

    Article  Google Scholar 

  79. Lu DG, Li XR, Liu XX, Zhang QW (2007) Identification and molecular cloning of putative odorant-binding proteins and chemosensory protein from the bethylid wasp, Scleroderma Guani Xiao Et Wu. J Chem Ecol 33:1359–1375. https://doi.org/10.1007/s10886-007-9310-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Shumei Wang, Institute of Biological Control, Fujian Agriculture and Forestry University, Fuzhou, China, for kindly rearing and providing parasitoids and fruit flies.

Funding

This research was supported by the advanced Talents Introduction Project of Wuyi University (YJ201910); the Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University (Keylab2020-02, Keylab2021-05); Key Project of Nanping Natural Science Foundation (N2023J004); Key Technological Innovation and Industrialization Project (2023XQ019); Special Funds for Technological Representative (NP2021KTS04).

Author information

Authors and Affiliations

Authors

Contributions

Methodology, D.Y., Q.J., J.Y. and P.C.; performed the experiments, D.Y., L.J., G.Y., X.H. and K.X.; analyzed the data, D.Y., L.J., Y.H. and D.L.; drafted the manuscript, D.Y. and P.C.; revised the manuscript, D.Y., J.Y. and P.C. All the authors read and approved the publication. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Pumo Cai or Jianquan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2024_9281_MOESM1_ESM.docx

Supplementary Material 1: Table S1: Model of phylogentic trees; Table S2: Primers for qRT-PCR of PincOBP genes in P. incisi; Table S3: Summary of P. incisi antennae transcriptome; Table S4: Gene annotation ratio; Table S5: BLASTx alignment of gustatory receptor genes of Psyttalia incisi and other insect species; Table S6: BLASTx alignment of odorant receptor genes of Psyttalia incisi and other insect species; Table S7: BLASTx alignment of ionotropic receptor (IR) genes of Psyttalia incisi and other insect species; Table S8: BLASTx alignment of sensory neuron membrane protein (SNMP) genes of Psyttalia incisi and other insect species. Figure S1: Distribution of unigene size in the P. incisi transcriptome assembly; Figure S2: Pie chart of homologous species distributionin in NCBI-NR database; Figure S3: Gene ontology (GO) classification of unigenes; Figure S4: KEGG classification of P. incisi unigenes; Figure S5: KOG classification of P. incisi unigenes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Li, D., Jiang, L. et al. Antennal transcriptome analysis of Psyttalia incisi (silvestri) (Hymenoptera: Braconidae): identification and tissue expression profiling of candidate odorant-binding protein genes. Mol Biol Rep 51, 333 (2024). https://doi.org/10.1007/s11033-024-09281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09281-3

Keywords

Navigation