Skip to main content
Log in

Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens’ colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues.

Methods and results

The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control.

Conclusions

The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its supporting information files.

References

  1. Alhinai EA, Walton GE, Commane DM (2019) The role of the gut microbiota in colorectal cancer causation. Int J Mol Sci 20:5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arthur JC, Jobin C (2011) The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17:396–409

    Article  PubMed  Google Scholar 

  3. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, Campbell BJ, Abujamel T, Dogan B, Rogers AB (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Azimirad M, Rostami-Nejad M, Rostami K, Naji T, Zali MR (2015) The susceptibility of celiac disease intestinal microbiota to Clostridium difficile infection. Official J Am Coll Gastroenterology| ACG 110:1740–1741

    Article  CAS  Google Scholar 

  5. De Bacchetti T, Aldred N, Clare AS, Burgess JG (2011) Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods 86:351–356

    Article  Google Scholar 

  6. Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Bezerra Lima B, Faria Fonseca B, da Graça Amado N, Moreira Lima D, Albuquerque Ribeiro R, Garcia Abreu J, de Castro Brito GA (2014) Clostridium difficile toxin a attenuates Wnt/β-catenin signaling in intestinal epithelial cells. Infect Immun 82:2680–2687

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bull MJ, Plummer NT (2014) Part 1: the human gut Microbiome in Health and Disease. Integr Med (Encinitas) 13:17–22

    PubMed  Google Scholar 

  9. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A (2016) Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Reviews Endocrinol 12:133–143

    Article  CAS  Google Scholar 

  10. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96:1025–1069

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Pitmon E, Wang K (2017) Microbiome, inflammation and colorectal cancer. Seminars in immunology. Elsevier, pp 43–53

  12. Cheng WT, Kantilal HK, Davamani F (2020) The mechanism of Bacteroides fragilis Toxin contributes to Colon cancer formation. Malays J Med Sci 27:9–21

    PubMed  PubMed Central  Google Scholar 

  13. Cho M, Carter J, Harari S, Pei Z (2014) The interrelationships of the gut microbiome and inflammation in colorectal carcinogenesis. Clin Lab Med 34:699–710

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cremona CA, Behrens A (2014) ATM signalling and cancer. Oncogene 33:3351–3360

    Article  CAS  PubMed  Google Scholar 

  15. Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA (2018) The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J Gastrointest Oncol 9:769

    Article  PubMed  PubMed Central  Google Scholar 

  16. Datorre JG, de Carvalho AC, Guimarães DP, Reis RM (2021) The role of Fusobacterium nucleatum in Colorectal Carcinogenesis. Pathobiology 88:127–140

    Article  CAS  PubMed  Google Scholar 

  17. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O (2008) Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drewes JL, Chen J, Markham NO, Knippel RJ, Domingue JC, Tam AJ, Chan JL, Kim L, McMann M, Stevens C (2022) Human colon cancer–derived Clostridioides difficile strains drive colonic tumorigenesis in mice. Cancer Discov 12:1873–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drewes JL, Chen J, Markham NO, Knippel RJ, Domingue JC, Tam AJ, Chan JL, Kim L, McMann M, Stevens C, Dejea CM, Tomkovich S, Michel J, White JR, Mohammad F, Campodónico VL, Heiser CN, Wu X, Wu S, Ding H, Simner P, Carroll K, Shrubsole MJ, Anders RA, Walk ST, Jobin C, Wan F, Coffey RJ, Housseau F, Lau KS, Sears CL (2022) Human Colon cancer-derived Clostridioides difficile strains drive Colonic Tumorigenesis in mice. Cancer Discov 12:1873–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubois RN (2014) Role of inflammation and inflammatory mediators in colorectal cancer. Trans Am Clin Climatol Assoc 125:358–372 discussion 372 – 353

    PubMed  PubMed Central  Google Scholar 

  21. Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ (2015) High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol 46:1135–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao Z, Guo B, Gao R, Zhu Q, Qin H (2015) Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gupta I, Baptista J, Bruce WR, Che CT, Furrer R, Gingerich JS, Grey AA, Marai L, Yates P, Krepinsky JJ (1983) Structures of fecapentaenes, the mutagens of bacterial origin isolated from human feces. Biochemistry 22:241–245

    Article  CAS  PubMed  Google Scholar 

  24. Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J (2022) Microbiota in health and diseases. Signal Transduct Target Therapy 7:135

    Article  Google Scholar 

  25. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H (2017) Endoglin is essential for the maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem cells. Stem Cell Reports 9:464–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jelski W, Mroczko B (2020) Biochemical markers of colorectal cancer–present and future. Cancer Manage Res 12:4789

    Article  CAS  Google Scholar 

  27. Jin W-J, Xu J-M, Xu W-L, Gu D-H, Li P-W (2014) Diagnostic value of interleukin-8 in colorectal cancer: a case-control study and meta-analysis. World J Gastroenterology: WJG 20:16334

    Article  CAS  PubMed Central  Google Scholar 

  28. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Reviews Gastroenterol Hepatol 16:713–732

    Article  Google Scholar 

  29. Li Z, Deng X, Luo J, Lei Y, Jin X, Zhu J, Lv G (2021) Metabolomic comparison of patients with colorectal Cancer at different Anticancer Treatment stages. Front Oncol 11:574318

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q-Q, Li C-M, Fu L-N, Wang H-L, Tan J, Wang Y-Q, Sun D-F, Gao Q-Y, Chen Y-X, Fang J-Y (2020) Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes 12:1788900

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, Lou L, Wang X, Zeng Y (2016) Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 6:1–10

    Google Scholar 

  32. Lucas C, Barnich N, Nguyen HTT (2017) Microbiota, inflammation and colorectal cancer. Int J Mol Sci 18:1310

    Article  PubMed  PubMed Central  Google Scholar 

  33. Magat EM, Balanag GA, CariÑo AM, Fellizar A, Ortin TS, Guevarra L Jr., Albano PM (2020) Clostridioides difficile antibody response of colorectal cancer patients versus clinically healthy individuals. Biosci Microbiota Food Health 39:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Md Zin SR, Mohamed Z, Alshawsh MA, Wong WF, Kassim NM (2018) Mutagenicity evaluation of Anastatica Hierochuntica L. aqueous extract in vitro and in vivo. Exp Biol Med (Maywood) 243:375–385

    Article  CAS  PubMed  Google Scholar 

  36. Montalban-Arques A, Scharl M (2019) Intestinal microbiota and colorectal carcinoma: implications for pathogenesis, diagnosis, and therapy. EBioMedicine 48:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natividad JM, Verdu EF (2013) Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 69:42–51

    Article  CAS  PubMed  Google Scholar 

  38. Ostadmohammadi S, Azimirad M, Houri H, Naseri K, Javanmard E, Mirjalali H, Yadegar A, Sadeghi A, Asadzadeh Aghdaei H, Zali MR (2021) Characterization of the gut microbiota in patients with primary sclerosing cholangitis compared to inflammatory bowel disease and healthy controls. Mol Biol Rep 48:5519–5529

    Article  CAS  PubMed  Google Scholar 

  39. Peng Y, Nie Y, Yu J, Wong CC (2021) Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites 11

  40. Pino A, De Angelis M, Chieppa M, Caggia C, Randazzo C (2020) Gut microbiota, probiotics and colorectal cancer: a tight relation. WCRJ 7:1456

    Google Scholar 

  41. Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W (2009) Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 8:4844–4850

    Article  CAS  PubMed  Google Scholar 

  42. Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14:89–103

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rebersek M (2021) Gut microbiome and its role in colorectal cancer. BMC Cancer 21:1–13

    Article  Google Scholar 

  44. Roxas JL, Koutsouris A, Viswanathan VK (2007) Enteropathogenic Escherichia coli-induced epidermal growth factor receptor activation contributes to physiological alterations in intestinal epithelial cells. Infect Immun 75:2316–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruemmele F, Schwartz S, Seidman E, Dionne S, Levy E, Lentze M (2003) Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 52:94–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Si H, Yang Q, Hu H, Ding C, Wang H, Lin X (2021) Colorectal cancer occurrence and treatment based on changes in intestinal flora. Seminars in Cancer Biology. Elsevier, pp 3–10

  47. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12:3–20

    Article  PubMed  Google Scholar 

  48. Singh H, Nugent Z, Yu BN, Lix LM, Targownik LE, Bernstein CN (2017) Higher incidence of Clostridium difficile infection among individuals with inflammatory bowel disease. Gastroenterology 153:430–438 e432

    Article  PubMed  Google Scholar 

  49. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Van Nhieu JT, Furet JP (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6:e16393

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes & Diseases 3:130–143

    Article  Google Scholar 

  52. Taddese R, Garza DR, Ruiter LN, de Jonge MI, Belzer C, Aalvink S, Nagtegaal ID, Dutilh BE, Boleij A (2020) Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. Gut Microbes 12:1799733

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E (2020) Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 28:401–423

    Article  CAS  PubMed  Google Scholar 

  54. Thursby E, Juge N (2017) Introduction fo the human gut flora. Biochem J 474:1823–1836

    Article  CAS  PubMed  Google Scholar 

  55. Tsilimigras MC, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2:1–10

    Article  Google Scholar 

  56. Vacante M, Ciuni R, Basile F, Biondi A (2020) Gut microbiota and colorectal cancer development: a closer look to the adenoma-carcinoma sequence. Biomedicines 8:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang B, Zhang J, Song F, Tian M, Shi B, Jiang H, Xu W, Wang H, Zhou M, Pan X, Gu J, Yang S, Jiang L, Li Z (2016) EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett 381:331–340

    Article  CAS  PubMed  Google Scholar 

  58. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. Isme j 6:320–329

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y-C, Lee K-W, Tsai Y-S, Lu H-H, Chen S-Y, Hsieh H-Y, Lin C-S (2021) Downregulation of ATM and BRCA1 predicts poor outcome in Head and Neck Cancer: implications for ATM-Targeted therapy. J Personalized Med 11:389

    Article  Google Scholar 

  60. Wang Z, Dan W, Zhang N, Fang J, Yang Y (2023) Colorectal cancer and gut microbiota studies in China. Gut Microbes 15:2236364

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu J, Zhou B, Pang X, Song X, Gu Y, Xie R, Liu T, Xu X, Wang B, Cao H (2022) Clostridium butyricum, a butyrate-producing potential probiotic, alleviates experimental colitis through epidermal growth factor receptor activation. Food Funct 13:7046–7061

    Article  CAS  PubMed  Google Scholar 

  62. Xiong H, Zhang J (2017) Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer. Oncol Lett 14:7825–7828

    PubMed  PubMed Central  Google Scholar 

  63. Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L (2023) A review of Gut Microbiota-Derived metabolites in Tumor Progression and Cancer Therapy. Adv Sci 10:2207366

    Article  CAS  Google Scholar 

  64. Yoshii K, Hosomi K, Sawane K, Kunisawa J (2019) Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zackular J, Rogers M, Ruffin MVI, Schloss PD (2014) The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res 7:1112–1121

    Article  CAS  Google Scholar 

  66. Zhang Z, Tang H, Chen P, Xie H, Tao Y (2019) Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Therapy 4:1–34

    CAS  Google Scholar 

  67. Zheng Y, Luo Y, Lv Y, Huang C, Sheng Q, Zhao P, Ye J, Jiang W, Liu L, Song X, Tong Z, Chen W, Lin J, Tang YW, Jin D, Fang W (2017) Clostridium difficile colonization in preoperative colorectal cancer patients. Oncotarget 8:11877–11886

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of the Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases and Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This study was supported financially by a grant [no. RIGLD 1090] from Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

S.J.S and M.A.: microbiological culture and experiments, molecular assays, cell culture experiments; S.J.S and M.R.N: proposal writing and project design. S.J.S, M.A, H.R. and MAL: statistical analysis, M.A, H.R. and S.T: drafting the manuscript; S.M, M.R.N and AY critical manuscript revision. M.R.Z.: clinical mentorship. All authors approved the final version of the manuscript and authorship list.

Corresponding authors

Correspondence to Mohammad Rostami-Nejad or Abbas Yadegar.

Ethics declarations

Ethical approval

The study was approved by Institutional Ethical Review Committee of the Research Institute for Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical Sciences (IR.SBMU.RIGLD.REC.1399.011). Documented informed consent has been signed with all subjects or their legal guardians prior to sample collection. All experiments were performed in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani-Sherafat, S., Azimirad, M., Raeisi, H. et al. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol Biol Rep 51, 265 (2024). https://doi.org/10.1007/s11033-024-09273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09273-3

Keywords

Navigation