Skip to main content
Log in

The possible effects of the MTOR polymorphisms on preeclampsia susceptibility, severity, and onset: a case–control study and in silico analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Preeclampsia (PE) is a gestational complication with developed hypertension and proteinuria. Evidence showed the role of mTOR in various cellular processes. Therefore, this study aimed to evaluate the effects of MTOR polymorphisms on susceptibility, severity, and onset of Preeclampsia (PE).

Methods and results

A total of 250 PE pregnant women and 258 age-matched control subjects were recruited in this study. To genotype MTOR polymorphisms, the PCR-RFLP method was used. The SpliceAid 2 and PROMO tools were used for in silico analysis. The maternal MTOR rs17036508T/C polymorphism was associated with PE risk in various genetic models. There was no relationship between rs2536T/C and rs2295080T/G polymorphisms and PE. The TTC and TGC haplotypes of rs2536/ rs2295080/ rs17036508 polymorphisms were significantly higher in PE women. Subgroup analysis revealed the association between the MTOR rs2295080 variant and an increased risk of Early-onset PE (EOPE). However, the MTOR rs17036508 was associated with a higher risk of EOPE and Late- Onset PE. In addition, the MTOR rs2295080 could increase the risk of severe PE. The results of the in silico analysis showed that rs17036508 disrupted several binding motifs in the mutant sequence. The PROMO database revealed that the T to C substitution leads to the loss of the TFII-I binding site in the mutant allele.

Conclusion

The MTOR rs17036508T/C polymorphism was associated with PE risk. There was an association between the MTOR rs2295080 variant and an increased risk of EOPE. The MTOR rs17036508T/C and rs2295080T/C variants could disrupt several binding motifs and TFII-I binding respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

PE:

Preeclampsia

PCR-RFLP:

Polymerase chain reaction-restriction fragment length polymorphism

EOPE:

Early-onset preeclampsia

LOPE:

Late-onset preeclampsia

Sam68:

Src associated in mitosis, of 68 kDa

hnRNP G:

Heterogeneous nuclear ribonucleoprotein G

ETR-3:

Elav-type RNA-binding protein

TFII-I:

Transcription factor II-I

PI3K/AKT/mTOR:

Phosphoinositide-3 kinase-AKT-mammalian target of the rapamycin

SNP:

Single nucleotide polymorphism

EVT:

Extravillous trophoblast

References

  1. Bibbins-Domingo K, Grossman DC, Curry SJ, Barry MJ, Davidson KW, Doubeni CA et al (2017) Screening for preeclampsia: US preventive services task force recommendation statement. JAMA 317(16):1661–1667

    Article  PubMed  Google Scholar 

  2. Jahan F, Vasam G, Green AE, Bainbridge SA, Menzies KJ (2023) Placental mitochondrial function and dysfunction in preeclampsia. Int J Mol Sci 24(4):4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR (2020) Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules 10(6):953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakashima A, Aoki A, Kusabiraki T, Shima T, Yoshino O, Cheng SB et al (2017) Role of autophagy in oocytogenesis, embryogenesis, implantation, and pathophysiology of pre-eclampsia. J Obstet Gynecol Res 43(4):633–643

    Article  Google Scholar 

  5. Nakashima A, Cheng S-B, Ikawa M, Yoshimori T, Huber WJ, Menon R et al (2020) Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy 16(10):1771–1785

    Article  CAS  PubMed  Google Scholar 

  6. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  7. Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD et al (2008) Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev Res 1(1):65–76

    Article  CAS  Google Scholar 

  8. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and Disease. Cell 168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan Y, Shan N, Tan B, Deng Q, Liu Y, Wang H et al (2018) SRC-3 plays a critical role in human umbilical vein endothelial cells by regulating the PI3K/Akt/mTOR pathway in preeclampsia. Reprod Sci 25(5):748–758

    Article  CAS  PubMed  Google Scholar 

  10. Yang Q, Guan K-L (2007) Expanding mTOR signaling. Cell Res 17(8):666–681

    Article  CAS  PubMed  Google Scholar 

  11. Patel PH, Chadalavada RS, Chaganti R, Motzer RJ (2006) Targeting Von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res 12(24):7215–7220

    Article  CAS  PubMed  Google Scholar 

  12. Arroyo JA, Brown LD, Galan HL (2009) Placental mammalian target of rapamycin and related signaling pathways in an ovine model of intrauterine growth restriction. Am J Obstet Gynecol 201(6):616

    Article  PubMed Central  Google Scholar 

  13. Tsai K, Tullis B, Jensen T, Graff T, Reynolds P, Arroyo J (2021) Differential expression of mTOR related molecules in the placenta from gestational Diabetes Mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients. Reprod Biol 21(2):100503

    Article  CAS  PubMed  Google Scholar 

  14. Wu D, Hong H, Huang X, Huang L, He Z, Fang Q et al (2016) CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the akt signaling pathway. Placenta 43:17–25

    Article  CAS  PubMed  Google Scholar 

  15. Lai WS, Ding YL (2019) GNG7 silencing promotes the proliferation and differentiation of placental cytotrophoblasts in preeclampsia rats through activation of the mTOR signaling pathway. Int J Mol Med 43(5):1939–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shao J, Li Y, Zhao P, Yue X, Jiang J, Liang X et al (2014) Association of mTOR polymorphisms with cancer risk and clinical outcomes: a meta-analysis. PLoS One 9(5):e97085

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Li Q, Gu C, Zhu Y, Wang M, Yang Y, Wang J et al (2013) Polymorphisms in the mTOR gene and risk of sporadic prostate cancer in an eastern Chinese population. PLoS One 8(8):e71968

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao Q, Ju X, Li P, Meng X, Shao P, Cai H et al (2012) A functional variant in the MTOR promoter modulates its expression and is associated with renal cell cancer risk. PLoS One 7(11):e50302

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cunningham FG, Leveno KJ, Dashe JS, Hoffman BL, Spong CY, Casey BM (2022) Williams Obstetrics, 26e. McGraw Hill, New York, NY

    Google Scholar 

  20. Rezaei M, Eskandari F, Mohammadpour-Gharehbagh A, Teimoori B, Yaghmaei M, Mokhtari M et al (2018) The Drosha rs10719 T > C polymorphism is associated with preeclampsia susceptibility. Clin Exp Hypertens 40(5):440–445

    Article  CAS  PubMed  Google Scholar 

  21. Piva F, Giulietti M, Burini AB, Principato G (2012) SpliceAid 2: a database of human splicing factors expression data and RNA target motifs. Hum Mutat 33(1):81–85

    Article  CAS  PubMed  Google Scholar 

  22. Hannenhalli S, Levy S (2001) Promoter prediction in the human genome. Bioinformatics 17(suppl1):S90–S6

    Article  PubMed  Google Scholar 

  23. Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31(13):3651–3653

    Article  PubMed  PubMed Central  Google Scholar 

  24. Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  PubMed  Google Scholar 

  25. Baltajian K, Hecht JL, Wenger JB, Salahuddin S, Verlohren S, Perschel FH et al (2014) Placental lesions of vascular insufficiency are associated with anti-angiogenic state in women with preeclampsia. Hypertens Pregnancy 33(4):427–439

    Article  CAS  PubMed  Google Scholar 

  26. Lokeswara AW, Hiksas R, Irwinda R, Wibowo N (2021) Preeclampsia from cellular wellness to inappropriate cell death, and the roles of nutrition. Front Cell Dev Biol 9:726513

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aouache R, Biquard L, Vaiman D, Miralles F (2018) Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19051496

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weel I, Ribeiro V, Romão-Veiga M, Fioratti E, Peraçoli J, Peraçoli M (2023) Down-regulation of autophagy proteins is associated with higher mTOR expression in the placenta of pregnant women with preeclampsia. Braz J Med Biol Res. https://doi.org/10.1590/1414-431X2022e12283

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qi G-H, Wang C-H, Zhang H-G, Yu J-G, Ding F, Song Z-C et al (2020) Comprehensive analysis of the effect of rs2295080 and rs2536 polymorphisms within the mTOR gene on cancer risk. Biosci Rep 40(7):BSR20191825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiang H, Liu S, Zong C, Li Z, Liu Y, Ma X et al (2015) A single nucleotide polymorphism in the MTOR gene is associated with recurrent spontaneous abortion in the Chinese female population. Syst Biol Reprod Med 61(4):205–210

    Article  CAS  PubMed  Google Scholar 

  31. Yin X, Xu Z, Zhang Z, Li L, Pan Q, Zheng F et al (2017) Association of PI3K/AKT/mTOR pathway genetic variants with type 2 diabetes mellitus in Chinese. Diabetes Res Clin Pract 128:127–135

    Article  CAS  PubMed  Google Scholar 

  32. Zhu A, Yang X, Sun M, Zhang Z, Li M (2015) Associations between INSR and MTOR polymorphisms in type 2 diabetes mellitus and diabetic nephropathy in a Northeast Chinese Han population. Genet Mol Res 14(1):1808–1818

    Article  CAS  PubMed  Google Scholar 

  33. Husen P, Straub K, Willuweit K, Hagemann A, Wedemeyer H, Bachmann HS et al (eds) (2019) SNPs within the MTOR gene are associated with an increased risk of developing de novo diabetes mellitus following the administration of everolimus in liver transplant recipients. Transplantation Proceedings; : Elsevier

  34. Saravani M, Shahraki-Ghadimi H, Maruei-Milan R, Mehrabani M, Mirzamohammadi S, Nematollahi MH (2020) Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk. Mol Biol Rep 47:3551–3556

    Article  CAS  PubMed  Google Scholar 

  35. 乐鑫 赵培伟 (2015) 刘智胜, 吴革菲, 涂飞. 胡家胜 et al mTOR 基因多态性与小儿癫癎易感性的相关性 中国当代儿科杂志 17(6):560–564

  36. Zining J, Lu X, Caiyun H, Yuan Y (2016) Genetic polymorphisms of mTOR and cancer risk: a systematic review and updated meta-analysis. Oncotarget 7(35):57464

    Article  PubMed  PubMed Central  Google Scholar 

  37. Min Z, Mi Y, Lv Z, Sun Y, Tang B, Wu H et al (2022) Associations of genetic polymorphisms of mTOR rs2295080 T/G and rs1883965 G/a with susceptibility of urinary system cancers. Dis Markers 2022:1–16

    Google Scholar 

  38. Bielli P, Busà R, Paronetto M, Sette C (2011) The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Related Cancer 18(4):R91-R

    Article  CAS  Google Scholar 

  39. Awe O, Sinkway JM, Chow RP, Wagener Q, Schulz EV, Jeremy YY et al (2020) Differential regulation of a placental SAM68 and sFLT1 gene pathway and the relevance to maternal vitamin D sufficiency. Pregnancy Hypertens 22:196–203

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fadri M, Daquinag A, Wang S, Xue T, Kunz J (2005) The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4, 5-bisphosphate and TORC2. Mol Biol Cell 16(4):1883–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanikawa M, Wada-Hiraike O, Nakagawa S, Shirane A, Hiraike H, Koyama S et al (2011) Multifunctional transcription factor TFII-I is an activator of BRCA1 function. Br J Cancer 104(8):1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article was extracted from a PhD dissertation at Zahedan University of Medical Sciences (IR.ZAUMS.REC.1399.349). Financial support was received from Iran National Science Foundation (INSF, project No 98023121) to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by MR, MG, FG, MS and SS. In silico analysis was performed by HS-G. The first draft of the manuscript was written by MR and SS. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeedeh Salimi.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest to disclosure.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The study protocol was approved by the ethics committee of Zahedan University of Medical Sciences (IR.ZAUMS.REC.1399.349).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Ghasemi, M., Saravani, M. et al. The possible effects of the MTOR polymorphisms on preeclampsia susceptibility, severity, and onset: a case–control study and in silico analysis. Mol Biol Rep 51, 335 (2024). https://doi.org/10.1007/s11033-023-09190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09190-x

Keywords

Navigation