Skip to main content
Log in

Regulation of gene expression by modulating microRNAs through Epigallocatechin-3-gallate in cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is an intricate ailment that has a higher death rate globally and is characterized by aberrant cell proliferation and metastasis in nature. Since the beginning of healthcare, natural products, especially those derived from plants, have been utilized to support human health. Green tea contains an essential catechin called epigallocatechin gallate, which has anti-proliferative, anti-mutagenic, anti-inflammatory, and antioxidative properties. The anticancer properties of EGCG have been extensively studied using pre-clinical cell culture and animal model systems. Dysregulated miRNA may be a biomarker since it influences the different characteristics of cancer like upholding proliferative signaling, cell death, invasiveness, metastasis, and angiogenesis. EGCG either elevates or lowers the expression of dysregulated miRNAs in cancer. Nonetheless, due to its anticancer properties, greater attention has been paid towards the development of efficient strategies for utilizing EGCG in cancer chemotherapy. This review summarizes the modifying effect of EGCG on miRNAs in cancer after briefly discussing the anticancer mechanisms of EGCG and the function of miRNAs in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No Data associated in this manuscript.

Abbreviations

4–HPR:

N–(4–Hydroxyphenyl) retinamide

5-FU:

5–Fluorouracil

67LR:

67 kDa laminin receptors

Akt:

Protein kinase B

AR:

Androgen receptor

CRC:

Colorectal cancer

CSCs:

Cancer stem cells

CTR1:

Copper transport 1

DNMTs:

DNA methyltransferases

EC:

Epicatechin

ECG:

Epicatechin gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin-3-O-gallate

GTE:

Green tea extract

GTP:

Green tea polyphenols

HCC:

Hepatocellular carcinoma

HDFs:

Human dermal fibroblasts

HIF-1α:

Hypoxia-inducible factor- 1α

HMGA2:

High mobility group A2

HO-1:

Heme oxygenase 1

IFN:

Interferon

lncRNA:

Long non-coding RNA

MAPK:

Mitogen-activated protein kinase

miRNA:

microRNA

NEAT1:

Nuclear enriched abundant transcript 1

NNK - 4:

(N-methyl-N-nitrosoamino)-1-(3-pyridyl)-1-butanone

NPC:

Nasopharyngeal carcinoma

Nrf2:

Nuclear factor erythroid 2-related factor 2

NSCLC:

Non-small cell lung cancer

ODD:

Oxygen-dependent degradation

OGmiR:

Oncogene miRNA

OSCC:

Oral squamous cell carcinoma

PCa:

Prostate cancer

PKA:

Protein kinase A

PP2A:

Protein phosphate 2A

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

SC:

Skin cancer

SDCSCs:

Spheroid-derived CSCs

SIRT1:

Sirtuin (silent mating type information regulation 2 homolog)

STAT:

Signal transducers and activators of transcription

TSmiR:

Tumor suppressor miRNA

UTR:

Untranslated region

WHO:

World Health Organisation

References

  1. Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9:448–451

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  3. Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P (2022) Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme. India Indian J Med Res 156:598–607

    PubMed  Google Scholar 

  4. Kulothungan V, Sathishkumar K, Leburu S, Ramamoorthy T, Stephen S, Basavarappa D, Tomy N, Mohan R, Menon GR, Mathur P (2022) Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on national cancer registry program. BMC Cancer 22:527

    Article  PubMed  PubMed Central  Google Scholar 

  5. Varghese E, Liskova A, Kubatka P, Samuel SM, Busselberg D (2020) Anti-angiogenic effects of phytochemicals on miRNA regulating Breast cancer progression. Biomolecules 10:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wood CG (2007) Multimodal approaches in the management of locally advanced and metastatic renal cell carcinoma: combining Surgery and systemic therapies to improve patient outcome. Clin Cancer Res 13:697s–702s

    Article  PubMed  Google Scholar 

  7. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmalenberg H, Weigang-Koehler K, Bechstein W-O, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of Pancreatic cancer. JAMA 297:267

    Article  PubMed  CAS  Google Scholar 

  8. Fu Z, Wang L, Li S, Chen F, Au-Yeng KK, Shi C (2021) MicroRNA as an important target for anticancer drug development. Front Pharmacol 12:736323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6:4103–4112

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Azmi AS, Bhat SH, Hanif S, Hadi SM (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 580:533–538

    Article  PubMed  CAS  Google Scholar 

  11. Cao J, Xia X, Chen X, Xiao J, Wang Q (2013) Characterization of flavonoids from Dryopteris erythrosora and evaluation of their anioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 51:242–250

    Article  PubMed  CAS  Google Scholar 

  12. Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I (2021) Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 26:1109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xie S, Zhou J (2017) Harnessing plant biodiversity for the discovery of novel anticancer drugs and targeting microtubules. Front Plant Sci 8:720

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Med 7:1129–1150

    Article  Google Scholar 

  15. Biagi JJ, Raphael MJ, Mackillop WJ, Kong W, King WD, Booth CM (2011) Association between time to initiation of adjuvant chemotherapy and survival in Colorectal cancer. JAMA 305:2335

    Article  PubMed  CAS  Google Scholar 

  16. Thakur A, Prasad N, Raina K, Sharma R, Chaudhary A (2023) Role of plant-based anticancer compounds in treatment of breast cancer. Curr Pharmacol Rep 9:468

    Article  Google Scholar 

  17. Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH (2020) Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 25:3146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee RC, Feinbaum RL, Ambros V (1993) The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  19. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  20. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  PubMed  CAS  Google Scholar 

  21. Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Astrom G, Babina M, Bertin N, Burroughs AM, Carlisle AJ, Daub CO, Detmar M, Deviatiiarov R, Fort A, Gebhard C, Goldowitz D et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878

    Article  PubMed  PubMed Central  Google Scholar 

  22. Espinosa CES, Slack FJ (2006) The role of microRNAs in cancer. Yale J Biol Med 79:131–140

    CAS  Google Scholar 

  23. Lee Y, Kim M, Han J, Yeom K-H, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Koo CX, Kobiyama K, Shen YJ, LeBert N, Ahmad S, Khatoo M, Aoshi T, Gasser S, Ishii KJ (2015) RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression. J Biol Chem 290:7463–7473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Borchert GM, Lanier W, Davidson BL (2006) Rna polymerase iii transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  PubMed  CAS  Google Scholar 

  26. MacFarlane L-A, Murphy P (2010) MicroRNA: Biogenesis, function and role in Cancer. Curr Genomics 11:537–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  PubMed  CAS  Google Scholar 

  28. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE (2016) Pairing beyond the seed supports MicroRNA Targeting specificity. Mol Cell 64:320–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  Google Scholar 

  30. Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tafrihi M, Hasheminasab E (2019) MiRNAs: Biology, biogenesis, their web-based tools and databases. Microrna 8:4–27

    Article  PubMed  CAS  Google Scholar 

  32. Yamada S, Tsukamoto S, Huang Y, Makio A, Kumazoe M, Yamashita S, Tachibana H (2016) Epigallocatechin-3-O-Gallate up-regulates MicroRNA-Let-7b expression by activating 67-KDa laminin receptor signaling in Melanoma cells. Sci Rep 6:19225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  34. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microrna family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  35. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between Let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Asangani IA, Rasheed SAK, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (MiR-21) post-transcriptionally downregulates Tumor suppressor pdcd4 and stimulates invasion, intravasation and Metastasis in Colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  37. Zhu S, Si M-L, Wu H, Mo Y-Y (2007) MicroRNA-21 targets the Tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  PubMed  CAS  Google Scholar 

  38. Meng F, Henson R, Wehbe–Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the pten Tumor suppressor gene in human hepatocellular cancer. Gastroenterol 133:647–658

    Article  CAS  Google Scholar 

  39. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) C-Myc-regulated micrornas modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  40. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L, Kipps T, Croce CM, Pekarsky Y (2010) 13q14 deletions in CLL involve cooperating Tumor suppressors. Blood 115:3916–3922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chan JK, Kiet TK, Blansit K, Ramasubbaiah R, Hilton JF, Kapp DS, Matei D (2014) MiR-378 as a biomarker for response to anti-angiogenic treatment in Ovarian cancer. Gynecol Oncol 133:568–574

    Article  PubMed  CAS  Google Scholar 

  42. Zeng M, Zhu L, Li L, Kang C (2017) MiR-378 suppresses the proliferation, migration and invasion of colon Cancer cells by inhibiting SDAD1. Cell Mol Biol 22:12

    Google Scholar 

  43. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  PubMed  CAS  Google Scholar 

  44. Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, Li P, Zhang W, Wu H, Feng N, Wang Z, Hua L, Wang X (2011) MiR-143 decreases Prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350:207–213

    Article  PubMed  CAS  Google Scholar 

  45. Wang B, Zou A, Ma L, Chen X, Wang L, Zeng X, Tan T (2017) MiR-455 inhibits Breast cancer cell proliferation through targeting CDK14. Eur J Pharmacol 807:138–143

    Article  PubMed  CAS  Google Scholar 

  46. Liang H, Wang F, Chu D, Zhang W, Liao Z, Fu Z, Yan X, Zhu H, Guo W, Zhang Y, Guan W, Chen X (2021) MiR-93 functions as an oncomir for the downregulation of pdcd4 in gastric carcinoma. Sci Rep 6:23772

    Article  Google Scholar 

  47. Liu S, Xu Z-L, Sun L, Liu Y, li C-C, Li H-M, Zhang W, Li C-J, Qin W (2016) (–)-Epigallocatechin-3-Gallate induces apoptosis in human Pancreatic cancer cells via PTEN. Mol Med Rep 14:599–605

    Article  PubMed  CAS  Google Scholar 

  48. Wu Z, He B, He J, Mao XJP (2013) Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN Tumor suppressor gene in human Prostate cancer. Prostate 73:596–604

    Article  PubMed  CAS  Google Scholar 

  49. Zhao Z, Shen X, Zhang D, Xiao H, Kong H, Yang B, Yang L (2021) MicrRNA-153 enhances the therapeutic effect of radiotherapy by targeting JAG1 in pancreatic cells. Oncol Lett 21:1–8

    Article  CAS  Google Scholar 

  50. Guan B, Li Q, Shen L, Rao Q, Wang Y, Zhu Y, Zhou X-J, Li X-H (2016) MicroRNA-205 directly targets Kruppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma. Int J Oncol 49:720–734

    Article  PubMed  CAS  Google Scholar 

  51. Song Li, Li D, Gu Y, Wen ZM, Jie J, Zhao D, Peng L-P (2016) MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 cell proliferation, migration, and invasion by regulation of PTEN/PI3K/AKT pathway. Clin. Lung Cancer 17:e65–e75

    Google Scholar 

  52. Li H-Y, Liang J-L, Kuo Y-L, Lee H-H, Calkins MJ, Chang H-T, Lin F-C, Chen Y-C, Hsu T-I, Hsiao M, Ger L-P, Lu P-J (2017) miR105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative Breast cancer. Breast Cancer Res 19:133

    Article  PubMed  PubMed Central  Google Scholar 

  53. Honeywell DR, Cabrita MA, Zhao H, Dimitroulakos J, Addison CL (2013) MiR-105 inhibits prostate tumour growth by suppressing CDK6 levels. PLoS ONE 8:e70515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, Yin Y, Luo H, Yi M, Xian L, Zhang S, Qin X, Zhu W, Li Y (2021) Cancer-secreted exosomal mir-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis 12:576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang G, Zhang X, Shi J (2015) MiR-98 inhibits cell proliferation and invasion of non-small cell carcinoma Lung cancer by targeting PAK1. Int J Clin Exp Med 8:20135–20145

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhai Z, Mu T, Zhao L, Li Y, Zhu D, Pan Y (2022) MiR-181a-5p facilitates proliferation, invasion, and glycolysis of Breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered 13(1):83–95

    Article  PubMed  CAS  Google Scholar 

  57. Wu X, Cheng YL, Matthen M, Yoon A, Schwartz GK, Bala S, Taylor AM, Momen-Heravi F (2021) Down-regulation of the Tumor suppressor miR-34a contributes to Head and Neck cancer by up-regulating the MET oncogene and modulating Tumor immune evasion. J Exp Clin Cancer Res 40(1):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fujiki H, Suganuma M, Imai K, Nakachi K (2002) Green tea: cancer preventive beverage and/or drug. Cancer Lett 188:9–13

    Article  PubMed  CAS  Google Scholar 

  59. Khan N, Afaq F, Mukhtar H (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10:475–510

    Article  PubMed  CAS  Google Scholar 

  60. Du G-J, Zhang Z, Wen X-D, Yu C, Calway T, Yuan C-S, Wang C-Z (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4:1679–1691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients 11:39

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen D (2004) Green tea and tea polyphenols in cancer prevention. Front Biosci 9:2618

    Article  PubMed  CAS  Google Scholar 

  63. Rawangkan A, Wongsirisin P, Namiki K, Iida K, Kobayashi Y, Shimizu Y, Fujiki H, Suganuma M (2018) Green tea catechin is an alternative immune checkpoint inhibitor that inhibits pd-l1 expression and lung Tumor growth. Molecules 23:2071

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561–561

    Article  PubMed  CAS  Google Scholar 

  65. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (–)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    Article  PubMed  CAS  Google Scholar 

  67. Roy M, Chakrabarty S, Sinha D, Bhatttacharya RK, Siddiqui M (2003) Anticlastogenic, antigenotoxic and apoptotic activity of epigallocatechin gallate: a green tea polyphenol. Mutat Res/Fund Mol M 523–524:33–41

    Article  Google Scholar 

  68. Yamane T, Nakatani H, Kikuoka N, Matsumoto H, Iwata Y, Kitao Y, Oya K, Takahashi T (1996) Inhibitory effects and toxicity of green tea polyphenols for gastrointestinal carcinogenesis. Cancer 77:1662–1667

    Article  PubMed  CAS  Google Scholar 

  69. Kundu JK, Na H-K, Chun K-S, Kim Y-K, Lee SJ, Lee SS, Lee O-S, Sim Y-C, Surh Y-J (2003) Inhibition of phorbol ester–induced cox-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133:S3805–S3810

    Article  Google Scholar 

  70. Yang CS, Wang Z-Y (1993) Tea and Cancer. J Natl Cancer Inst 85:1038–1049

    Article  PubMed  CAS  Google Scholar 

  71. Brueckner B, Lyko F (2004) DNA methyltransferase inhibitors: old and new Drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 25:551–554

    Article  PubMed  CAS  Google Scholar 

  72. Sartippour MR, Shao Z-M, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (vegf) induction in human Breast cancer cells. J Nutr 132:2307–2311

    Article  PubMed  CAS  Google Scholar 

  73. Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Thomas EY, Miele L (2013) EGCG, a major green tea catechin suppresses breast Tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jin L, Li C, Xu Y, Wang L, Liu J, Wang D, Hong C, Jiang Z, Ma Y, Chen Q, Yu F (2013) Epigallocatechin Gallate promotes p53 accumulation and activity via the inhibition of mdm2-mediated p53 ubiquitination in human Lung cancer cells. Oncol Rep 29:1983–1990

    Article  PubMed  CAS  Google Scholar 

  75. Min K-J, Kwon TK (2014) Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res 3:16–24

    Article  PubMed  Google Scholar 

  76. Wei R, Penso NEC, Hackman RM, Wang Y, Mackenzie GG (2019) Epigallocatechin-3-gallate (EGCG) suppresses Pancreatic cancer cell growth, invasion, and migration partly through the inhibition of akt pathway and epithelial-mesenchymal transition: enhanced efficacy when combined with gemcitabine. Nutrients 11:1856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yan C, Yang J, Shen L, Chen X (2012) Inhibitory effect of epigallocatechin gallate on Ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet 285:459–467

    Article  PubMed  CAS  Google Scholar 

  78. Spinella F, Rosano L, Decandia S, Castor VD, Albini A, Elia G, Natali PG, Bagnato A (2006) Antitumor effect of green tea polyphenol epigallocatechin-3-gallate in ovarian carcinoma cells: evidence for the endothelin-1 as a potential target. Exp Biol Med 231:1123–1127

    CAS  Google Scholar 

  79. Darweish MM, Abbas A, Ebrahim MA, Al-Gayyar MMH (2014) Chemopreventive and hepatoprotective effects of epigallocatechin-gallate against hepatocellular carcinoma: role of heparan sulfate proteoglycans pathway. J Pharm Pharmacol 66:1032–1045

    Article  PubMed  CAS  Google Scholar 

  80. Li S, Wu L, Feng J, Li J, Liu T, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S, Kong R, Chen K, Wang F, Xia Y, Lu J, Zhou Y, Dai W, Guo C (2016) In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 6:28479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang Y, Duan W, Owusu L, Wu D, Xin Y (2015) Epigallocatechin-3-Gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int J Mol Med 35:117–124

    Article  PubMed  CAS  Google Scholar 

  82. Huang C-H, Tsai S-J, Wang Y-J, Pan M-H, Kao J-Y, Way T-D (2009) EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food re 53:1156–1165

    Article  CAS  Google Scholar 

  83. Chen Y, Wang X-Q, Zhang Q, Zhu J-Y, Li Y, Xie C-F, Li X-T, Wu J-S, Geng S-S, Zhong C-Y, Han H-Y (2017) (-)-Epigallocatechin-3-gallate inhibits Colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients 9:572

    Article  PubMed  PubMed Central  Google Scholar 

  84. Luo K-W, Xia J, Cheng B-H, Gao H-C, Fu L-W, Luo X-L (2021) Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep 9:59–70

    Article  CAS  Google Scholar 

  85. Leon D, Buchegger K, Silva R, Riquelme I, Viscarra T, Mora-Lagos B, Zanella L, Schafer F, Kurachi C, Roa JC, Ili C, Brebi P (2020) Epigallocatechin gallate enhances MAL-PDT cytotoxic effect on PDT-resistant Skin cancer squamous cells. Int J Mol Sci 21:3327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhang J, Lei Z, Huang Z, Zhang X, Zhou Y, Luo Z, Zeng W, Su J, Peng C, Chen X (2016) Epigallocatechin-3-gallate (EGCG) suppresses Melanoma cell growth and Metastasis by targeting TRAF6 activity. Oncotarget 7(48):79557–79571

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses Lung cancer cell growth through upregulating miR-201 expression caused by stabilizing HIF-1α. Carcinog 32:1881–1889

    Article  CAS  Google Scholar 

  88. Bhardwaj V, Mandal AKA (2019) Next-generation sequencing reveals the role of epigallocatechin-3-gallate in regulating putative novel and known microRNAs which target the MAPK pathway in non-small-cell Lung cancer A549 cells. Molecules 24:368

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q (2018) EGCG inhibited Cancer stem cell-like properties by targeting has-miR-485-5p/RXRα in Lung cancer. J Cell Biochem 119:8623–8635

    Article  PubMed  CAS  Google Scholar 

  90. Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q (2018) EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells. Mol Carcinog 57:1835–1844

    Article  PubMed  CAS  Google Scholar 

  91. Zhou D-H, Wang X, Feng Q (2014) EGCG enhances the efficacy of cisplatin by downregulating has-mir-98-5p in NSCLC A549 cells. Nutr Cancer 66:636–644

    Article  PubMed  CAS  Google Scholar 

  92. Jiang P, Wu X, Wang X, Huang W, Feng Q (2016) NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in Lung cancer cells. Oncotarget 7:43337–43351

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yu CC, Chen PN, Peng CY, Yu C-H, Chou M-Y (2016) Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node Metastasis. Oncotarget 7:20180–20192

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H (2014) Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse Lung cancer. BMC Genomics 15(Suppl 11):S3

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fix LN, Shah M, Efferth T, Farwell MA, Zhang B (2010) MicroRNA expression profile of MCF-7 human Breast cancer cells and the effect of green tea polyphenon-60. Cancer Genom Proteom 7:261–277

    CAS  Google Scholar 

  96. Wei R, Mao L, Xu P, Zheng X, Hackman RM, Mackenzie GG, Wang Y (2018) Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces Breast cancer cell growth in preclinical models. Food Funct 9:5682–5696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zan L, Chen Q, Zhang L, Li X (2019) Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in Breast cancer cells by downregulation of miR-25. Bioengineered 10:374–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Banerjee S, Mandal AKA (2022) Role of epigallocatechin-3-gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front Genet 13:995046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mirzaaghaei S, Foroughmand AM, Saki G, Shafiei M (2019) Combination of epigallocatechin-3-gallate and silibinin: a novel approach for targeting both Tumor and endothelial cells. ACS Omega 4:8421–8430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Toden S, Tran H-M, Tovar-Camargo OA, Okugawa Y, Goel A (2016) Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in Colorectal cancer. Oncotarget 7:16158–16171

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146

    Article  PubMed  CAS  Google Scholar 

  102. Mostafa SM, Gamal-Eldeen AM, Maksoud NAE, Fahmi AA (2020) Epigallocatechin gallate-capped gold nanoparticles enhanced the Tumor suppressor let-7a and miR-34a in hepatocellular carcinoma cells. An Acad Bras Cienc 92:e20200574

    Article  PubMed  CAS  Google Scholar 

  103. Baselga-Escudero L, Nlade C, Ribas-Latre A, Casanova E, Suarez M, Torres JL, Salvado MJ, Arola L, Arola-Arnal A (2014) Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acid Res 42:882–892

    Article  PubMed  CAS  Google Scholar 

  104. Mokhtari H, Yaghmaei B, Sirati-Sabet M, Jafari N, Mardomi A, Abediankenari S, Mahrooz A (2020) Epigallocatechin-3-gallate enhances the efficacy of microRNA-34a mimic and microRNA-93 inhibitor co-transfection in Prostate cancer cell line. Iran J Allergy Asthma Immunol 19:612–623

    PubMed  Google Scholar 

  105. Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2011) Green tea polyphenol EGCG blunts androgen receptor function in Prostate cancer. FASEB J 25:1198–1207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chakrabarti M, Khandkar M, Banik NL, Ray SK (2012) Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res 1454:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chakrabarti M, Ai W, Banik NL, Ray SK (2013) Overexpression of mir-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem Res 38:420–432

    Article  PubMed  CAS  Google Scholar 

  108. Gordon MW, Yan F, Zhong X, Mazumder PB, Xuo-Monette ZY, Zou D, Young KH, Ramos KS, Li Y (2015) Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: implications in the etiology of Multiple Myeloma. Mol Carcinog 54:1060–1069

    Article  PubMed  CAS  Google Scholar 

  109. Lin C-H, Wang H-H, Chen T-H, Chiang M-C, Hung P-H, Chen Y-J (2020) Involvement of microRNA-296 in the inhibitory effect of epigallocatechin gallate against the migratory properties of anoikis-resistant nasopharyngeal carcinoma cells. Cancers 12:973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yu C, Jiao Y, Xue J, Zhang Q, Yang H, Xing L, Chen G, Wu J, Zhnag S, Zhu W, Cao J (2017) Metformin sensitizes non-small cell Lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 13:1560–1569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the administration of Vellore Institute of Technology, Vellore, for giving the necessary resources to complete this review study.

Funding

The authors reported that there is no funding associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

The concept and design of this study were made by MAKA. Data collection, analysis, and compilation were performed by DLCP. The first draft of the manuscript was written by DLCP. Final editing and critical evaluation of the manuscript were done by MAKA. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Abul Kalam Azad Mandal.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharshini, L.C.P., Mandal, A.K.A. Regulation of gene expression by modulating microRNAs through Epigallocatechin-3-gallate in cancer. Mol Biol Rep 51, 230 (2024). https://doi.org/10.1007/s11033-023-09145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09145-2

Keywords

Navigation