Skip to main content
Log in

Genomic resources for the Yellowfin tuna Thunnus albacares

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The Yellowfin tuna (Thunnus albacares) is a large tuna exploited by major fisheries in tropical and subtropical waters of all oceans except the Mediterranean Sea. Genomic studies of population structure, adaptive variation or of the genetic basis of phenotypic traits are needed to inform fisheries management but are currently limited by the lack of a reference genome for this species. Here we report a draft genome assembly and a linkage map for use in genomic studies of T. albacares.

Methods and results

Illumina and PacBio SMRT sequencing were used in combination to generate a hybrid assembly that comprises 743,073,847 base pairs contained in 2,661 scaffolds. The assembly has a N50 of 351,587 and complete and partial BUSCO scores of 86.47% and 3.63%, respectively. Double-digest restriction associated DNA (ddRAD) was used to genotype the 2 parents and 164 of their F1 offspring resulting from a controlled breeding cross, retaining 19,469 biallelic single nucleotide polymorphism (SNP) loci. The SNP loci were used to construct a linkage map that features 24 linkage groups that represent the 24 chromosomes of yellowfin tuna. The male and female maps span 1,243.8 cM and 1,222.9 cM, respectively. The map was used to anchor the assembly in 24 super-scaffolds that contain 79% of the yellowfin tuna genome. Gene prediction identified 46,992 putative genes 20,203 of which could be annotated via gene ontology.

Conclusions

The draft reference will be valuable to interpret studies of genome wide variation in T. albacares and other Scombroid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The sequencing data obtained during this project (PacBio and Illumina sequences used in assembly, dd-RAD illumine sequencing reads) were uploaded in genbank (Bioproject PRJNA504596). Supplementary Materials (Supplementary Methods and Materials, Supplementary Figs. 1–3) are included as supplementary Materials published with this manuscript. Supplementary File 2 (GO annotations) is uploaded in the Aquila Repository of the University of Southern Mississippi ((https://aquila.usm.edu/datasets/7/).

References

  1. Collette BB, Nauen CE (1983) FAO species catalogue. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Food and Agriculture Organization of the United Nations, Rome

  2. ISSF (2022) Status of the World Fisheriesfor Tuna: March 2022. International Seafood Sustainability Foundation, Washington, D.C.

  3. Sibert J, Hampton J (2003) Mobility of tropical tunas and the implications for fisheries management. Mar Policy 27:87–95. https://doi.org/10.1016/S0308-597X(02)00057-X

    Article  Google Scholar 

  4. Margulies D, Scholey VP, Wexler JB, Stein MS (2016) Research on the reproductive biology and early life history of yellowfin tuna Thunnus albacares in Panama. Advances in tuna aquaculture. Elsevier, pp 77–114.

  5. Carvalho GR, Hauser L (1994) Molecular genetics and the stock concept in fisheries. Rev Fish Biol Fish 4:326–350. https://doi.org/10.1007/BF00042908

    Article  Google Scholar 

  6. Schmid M, Frei D, Patrignani A et al (2018) Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res 46:8953–8965. https://doi.org/10.1093/nar/gky726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ye C, Hill CM, Wu S et al (2016) DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci Rep 6:31900. https://doi.org/10.1038/srep31900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma ZS, Li L, Ye C et al (2019) Hybrid assembly of ultra-long nanopore reads augmented with 10x-Genomics contigs: demonstrated with a human genome. Genomics 111:1896–1901. https://doi.org/10.1016/j.ygeno.2018.12.013

    Article  PubMed  CAS  Google Scholar 

  9. Haghshenas E, Asghari H, Stoye J et al (2020) HASLR: fast hybrid assembly of long reads. iScience 23:101389. https://doi.org/10.1016/j.isci.2020.101389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McWilliam S, Grewe PM, Bunch RJ, Barendse W (2016) A draft genome assembly of southern bluefin tuna Thunnus maccoyii. arXiv. Doi: 10.48550/arxiv.1607.03955.

  11. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. https://doi.org/10.1093/bioinformatics/btr011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Allam A, Kalnis P, Solovyev V (2015) Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinformatics 31:3421–3428. https://doi.org/10.1093/bioinformatics/btv415

    Article  PubMed  CAS  Google Scholar 

  14. Miclotte G, Heydari M, Demeester P et al (2016) Jabba: hybrid error correction for long sequencing reads. Algorithms Mol Biol 11:10. https://doi.org/10.1186/s13015-016-0075-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ye C, Ma ZS, Cannon CH et al (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinf. https://doi.org/10.1186/1471-2105-13-S6-S1

    Article  Google Scholar 

  16. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vaser R, Sović I, Nagarajan N, Šikić M (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27:737–746. https://doi.org/10.1101/gr.214270.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. https://doi.org/10.1371/journal.pone.0112963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Qin M, Wu S, Li A et al (2019) LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20:955. https://doi.org/10.1186/s12864-019-6337-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351

    Article  PubMed  CAS  Google Scholar 

  22. Cusatti S, Margulies D, Scholey V et al (2022) Spawning ecology of captive yellowfin tuna broodstock inferred by the use of mitochondrial DNA sequencing analysis. Aquacult Sci 70(4):331–342

    Google Scholar 

  23. Antoni L, Luque PL, Naghshpour K et al (2014) Development and characterization of microsatellite markers for blackfin tuna (Thunnus atlanticus) with the use of Illumina paired-end sequencing. FB 112:322–325. https://doi.org/10.7755/FB.112.4.8

    Article  Google Scholar 

  24. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  25. Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2:e431. https://doi.org/10.7717/peerj.431

    Article  PubMed  PubMed Central  Google Scholar 

  27. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rastas P (2017) Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 33:3726–3732. https://doi.org/10.1093/bioinformatics/btx494

    Article  PubMed  CAS  Google Scholar 

  29. Rastas P (2020) Lep-Anchor: automated construction of linkage map anchored haploid genomes. Bioinformatics 36:2359–2364. https://doi.org/10.1093/bioinformatics/btz978

    Article  PubMed  CAS  Google Scholar 

  30. Huang S, Kang M, Xu A (2017) HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 33:2577–2579. https://doi.org/10.1093/bioinformatics/btx220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Flynn JM, Hubley R, Goubert C et al (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA 117:9451–9457. https://doi.org/10.1073/pnas.1921046117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Stanke M, Keller O, Gunduz I et al (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439. https://doi.org/10.1093/nar/gkl200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, Orthology assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol 38:5825–5829. https://doi.org/10.1093/molbev/msab293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky108534

    Article  PubMed  CAS  Google Scholar 

  35. Marçais G, Delcher AL, Phillippy AM et al (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14:e1005944. https://doi.org/10.1371/journal.pcbi.1005944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Suda A, Nishiki I, Iwasaki Y et al (2019) Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Sci Rep 9:14450. https://doi.org/10.1038/s41598-019-50978-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gu Z, Gu L, Eils R et al (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    Article  PubMed  CAS  Google Scholar 

  38. Catchen JM, Hohenlohe PA, Bernatchez L et al (2017) Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour 17:362–365. https://doi.org/10.1111/1755-0998.12669

    Article  PubMed  CAS  Google Scholar 

  39. Jansen HJ, Liem M, Jong-Raadsen SA et al (2017) Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep 7(1):7213

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith JJ, Timoshevskaya N, Ye C et al (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50:270–277. https://doi.org/10.1038/s41588-017-0036-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Puncher GN, Cariani A, Maes GE et al (2018) Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol Ecol Resour 18:620–638. https://doi.org/10.1111/1755-0998.12764

    Article  PubMed  CAS  Google Scholar 

  42. Wiley G, Miller MJ (2020) A highly contiguous genome for the Golden-fronted woodpecker (Melanerpes aurifrons) via a hybrid Oxford Nanopore and short read assembly. G3. https://doi.org/10.1101/2020.01.03.894444.

  43. Tan MH, Austin CM, Hammer MP et al (2018) Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. Gigascience 7:1–6. https://doi.org/10.1093/gigascience/gix137

    Article  PubMed  CAS  Google Scholar 

  44. Tørresen OK, Star B, Mier P et al (2019) Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 47:10994–11006. https://doi.org/10.1093/nar/gkz841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lohse, K., Taylor-Cox, E., Darwin Tree of Life Barcoding Collective, et al. (2021). The genome sequence of the speckled wood butterfly pararge aegeria (Linnaeus 1758). Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.17278.1

  46. Dumschott K, Schmidt MH-W, Chawla HS et al (2020) Oxford Nanopore sequencing: new opportunities for plant genomics? J Exp Bot 71:5313–5322. https://doi.org/10.1093/jxb/eraa263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee Y-H, Yen T-B, Chen C-F, Tseng M-C (2018) Variation in the Karyotype, cytochrome b Gene, and 5S rDNA of four Thunnus (Perciformes, Scombridae) Tunas. Zool Stud 57:e34. https://doi.org/10.6620/ZS.2018.57-34

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aird D, Ross MG, Chen W-S et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. https://doi.org/10.1186/gb-2011-12-2-r18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brekke C, Johnston SE, Knutsen TM, Berg P (2023) Genetic architecture of individual meiotic crossover rate and distribution in Atlantic Salmon. Sci Rep 13(1):20481. https://doi.org/10.1038/s41598-023-47208-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Santini F, Carnevale G, Sorenson L (2013) First molecular scombrid timetree (Percomorpha: Scombridae) shows recent radiation of tunas following invasion of pelagic habitat. Ital J Zool 80(2):210–221. https://doi.org/10.1080/11250003.2013.775366

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Oceanic and Atmospheric Administration Saltonstall-Kennedy program award #NA16NMF4270223.

Views expressed in this paper are those of the authors and do not necessarily reflect those of the.

sponsors.

Author information

Authors and Affiliations

Authors

Contributions

Funding acquisition: ES; Study design: ES, PD; Sample acquisition: DM, SC, VS, ES; Data analysis and interpretations: PD, ES; Manuscript drafting: PD, ES; Manuscript reviewing: All authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eric A. E. Saillant.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Protocols employed in this study were approved by the Institutional Animal Care and Use Committee at the University of Southern Mississippi (protocol #1710301).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 600 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimens, P.V., Jones, K.L., Margulies, D. et al. Genomic resources for the Yellowfin tuna Thunnus albacares. Mol Biol Rep 51, 232 (2024). https://doi.org/10.1007/s11033-023-09117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09117-6

Keywords

Navigation