Skip to main content
Log in

Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312.

Methods

The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking.

Results

The study’s findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data.

Conclusions

The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.

Highlights

MST-312/NU7441 exerts a synergistic cytotoxic effect against NALM-6 cells.

NU7441 accentuates MST-312-induced apoptosis of NALM-6 cells.

MST-312/NU7441-induced apoptosis progresses through upregulation of the Bax/Bcl-2 ratio.

A combination of MST-312/NU7441 downregulates c-Myc and hTERT gene expression.

NU7441 increases MST-312-induced DNA damage in NALM-6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data would be available from the corresponding author upon reasonable request.

References

  1. Duffield AS, Mullighan CG, Borowitz MJ (2023) International Consensus classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 482(1):11–26

    Article  CAS  PubMed  Google Scholar 

  2. Franco PIR, do, Carmo Neto JR, de Menezes LB, Machado JR, Miguel MP (2023) : Revisiting the hallmarks of cancer: a new look at long noncoding RNAs in breast cancer. Pathology-Research and Practice :154381

  3. Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M (2023) Targeting DNA damage response pathways in cancer. Nat Rev Cancer 23(2):78–94

    Article  CAS  PubMed  Google Scholar 

  4. Curtin NJ (2023) Targeting the DNA damage response for cancer therapy. Biochem Soc Trans 51(1):207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohammadian Gol T, Rodemann HP, Dittmann K (2019) Depletion of Akt1 and Akt2 impairs the repair of Radiation-Induced DNA double strand breaks via homologous recombination. Int J Mol Sci 20(24):6316

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alikarami F, Safa M, Faranoush M, Hayat P, Kazemi A (2017) Inhibition of DNA-PK enhances chemosensitivity of B-cell precursor acute lymphoblastic Leukemia cells to doxorubicin. Biomed Pharmacother 94:1077–1093

    Article  CAS  PubMed  Google Scholar 

  7. Deshpande RA, Myler LR, Soniat MM, Makharashvili N, Lee L, Lees-Miller SP, Finkelstein IJ, Paull TT (2020) DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci Adv 6(2):eaay0922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fok JHL, Ramos-Montoya A, Vazquez-Chantada M, Wijnhoven PWG, Follia V, James N, Farrington PM, Karmokar A, Willis SE, Cairns J et al (2019) AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat Commun 10(1):5065

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shaik A, Kirubakaran S (2020) Evolution of PIKK family kinase inhibitors: a New Age cancer therapeutics. Front Biosci (Landmark Ed) 25(8):1510–1537

    Article  CAS  PubMed  Google Scholar 

  10. Timme CR, Rath BH, O’Neill JW, Camphausen K, Tofilon PJ (2018) The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol Cancer Ther 17(6):1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang L, Yang X, Tang Y, Zhang D, Zhu L, Wang S, Wang B, Ma T (2018) Inhibition of DNA–PK activity sensitizes A549 cells to X–ray irradiation by inducing the ATM–dependent DNA damage response. Mol Med Rep 17(6):7545–7552

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhar S, Datta A, Brosh RM Jr (2020) DNA helicases and their roles in cancer. DNA Repair 96:102994

    Article  CAS  PubMed  Google Scholar 

  13. Carson LM, Flynn RL (2023) Highlighting vulnerabilities in the alternative lengthening of telomeres pathway. Curr Opin Pharmacol 70:102380

    Article  CAS  PubMed  Google Scholar 

  14. Thompson CA, Wong JM (2020) Non-canonical functions of telomerase reverse transcriptase: emerging roles and biological relevance. Curr Top Med Chem 20(6):498–507

    Article  CAS  PubMed  Google Scholar 

  15. Saraswati AP, Relitti N, Brindisi M, Gemma S, Zisterer D, Butini S, Campiani G (2019) Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discovery Today 24(7):1370–1388

    Article  CAS  PubMed  Google Scholar 

  16. Waksal JA, Bruedigam C, Komrokji RS, Jamieson CH, Mascarenhas JO Telomerase-targeted therapies in myeloid malignancies. Blood Adv 2023:bloodadvances. 2023009903

  17. Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A (2021) The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 27:100323

    Article  PubMed  Google Scholar 

  18. Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK (2023) : Research progress of small-molecule Drugs in targeting telomerase in human cancer and aging. Chemico-Biol Interact :110631

  19. Palamarchuk AI, Kovalenko EI, Streltsova MA (2023) Multiple actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 11(4):1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metcalfe NB, Olsson M (2022) How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 31(23):6040–6052

    Article  CAS  PubMed  Google Scholar 

  21. Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K (2021) Potential of telomerase in Age-Related Macular Degeneration—involvement of Senescence, DNA damage response and autophagy and a key role of PGC-1α. Int J Mol Sci 22(13):7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barnes RP, Fouquerel E, Opresko PL (2019) The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 177:37–45

    Article  CAS  PubMed  Google Scholar 

  23. Lashkari M, Fatemi A, Valandani HM, Khalilabadi RM (2022) Promising anti-leukemic effect of Zataria multiflora extract in combination with doxorubicin to combat acute lymphoblastic Leukemia cells (Nalm-6)(in vitro and in silico). Sci Rep 12(1):12657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ameri Z, Ghiasi S, Farsinejad A, Hassanshahi G, Ehsan M, Fatemi A (2019) Telomerase inhibitor MST-312 induces apoptosis of Multiple Myeloma cells and down-regulation of anti-apoptotic, proliferative and inflammatory genes. Life Sci 228:66–71

    Article  CAS  PubMed  Google Scholar 

  25. Baluchi I, Anani H, Hassanshahi G, Fatemi A, Khalilabadi RM (2019) The effect of maslinic acid on apoptotic genes in u266 Multiple Myeloma cell line. Gene Rep 16:100431

    Article  Google Scholar 

  26. Lashkari M, Fatemi A, Farsinejad A, Valandani HM, Khalilabadi RM (2022) Vitamin D3, arsenic trioxide, or combination therapy for acute promyelocytic Leukemia. Gene Rep 27:101576

    Article  CAS  Google Scholar 

  27. Ghasemimehr N, Farsinejad A, Khalilabadi RM, Yazdani Z, Fatemi A (2018) The telomerase inhibitor MST-312 synergistically enhances the apoptotic effect of doxorubicin in pre-B acute lymphoblastic Leukemia cells. Biomed Pharmacother 106:1742–1750

    Article  CAS  PubMed  Google Scholar 

  28. Ashoub MH, Amiri M, Razavi R, Dawi EA, Farsinejad A, Divsalar F, Salavati-Niasari M (2023) Induction of ferroptosis cell death in acute promyelocytic Leukemia cell lines (NB4 and HL-60) using hydrothermally synthesized ZnO NPs in the presence of black cardamom extract. Results in Engineering 20:101479

    Article  CAS  Google Scholar 

  29. Taeby M, Ashoub MH, Asghari M, Farsinejad A, Amiri M Sol–gel synthesis of strontium ferrate (SrFeO3) nanoparticles and evaluation of anti-leukemic effects against leukemic cell lines. J Solgel Sci Technol 2023:1–10

  30. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Research/Environmental Mutagen Relat Subj 147(1–2):29–36

    CAS  Google Scholar 

  31. Fenech M (2000) The in vitro micronucleus technique. Mutat Research/Fundamental Mol Mech Mutagen 455(1–2):81–95

    Article  CAS  Google Scholar 

  32. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nurain IO, Ibitoye IO, Bewaji CO, Molecular docking analysis of secondary metabolites of stem bark of enantia chlorantha with human calcium pump (2018):. J Proteins Proteom 9(1)

  34. Hintzsche H, Montag G, Stopper H (2018) Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells. Sci Rep 8(1):1–11

    Google Scholar 

  35. Quazi S (2022) Telomerase gene therapy: a remission toward cancer. Med Oncol 39(6):105

    Article  PubMed  Google Scholar 

  36. Parekh N, Garg A, Choudhary R, Gupta M, Kaur G, Ramniwas S, Shahwan M, Tuli HS, Sethi G (2023) The role of natural flavonoids as telomerase inhibitors in suppressing Cancer Growth. Pharmaceuticals 16(4):605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D’Alessandris QG, Battistelli M, Pennisi G, Offi M, Martini M, Cenci T, Falchetti ML, Lauretti L, Olivi A, Pallini R Telomerase inhibition in malignant gliomas. A systematic review. Expert Rev Mol Med 2023:1–25

  38. Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H (2022) Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 40(2):127–140

    Article  Google Scholar 

  39. Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A (2022) Τelomerase inhibitors and activators in aging and cancer: a systematic review. Mol Med Rep 25(5):1–11

    Article  Google Scholar 

  40. Chung SS, Oliva B, Dwabe S, Vadgama JV (2016) Combination treatment with flavonoid morin and telomerase inhibitor MST–312 reduces cancer stem cell traits by targeting STAT3 and telomerase. Int J Oncol 49(2):487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang S-J, Yang P-M (2021) A bioinformatics analysis identifies the telomerase inhibitor MST-312 for treating high-STMN1-expressing hepatocellular carcinoma. J Personalized Med 11(5):332

    Article  CAS  Google Scholar 

  42. Wong VC, Ma J, Hawkins CE (2009) Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett 274(1):151–159

    Article  CAS  PubMed  Google Scholar 

  43. Gurung RL, Lim SN, Low GKM, Hande MP (2015) MST-312 alters telomere dynamics, gene expression profiles and growth in human Breast cancer cells. J Nutrigenetics Nutrigenomics 7(4–6):283–298

    Google Scholar 

  44. Buckley AM, Lynam-Lennon N, O’Neill H, O’Sullivan J (2020) Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Reviews Gastroenterol Hepatol 17(5):298–313

    Article  CAS  Google Scholar 

  45. Guterres AN, Villanueva J (2020) Targeting telomerase for cancer therapy. Oncogene 39(36):5811–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villarinho NJ, Vasconcelos FC, Mazzoccoli L, da Silva Robaina MC, Pessoa LS, Siqueira PET, Maia RC, de Oliveira DM, Leite de Sampaio e Spohr TC, Lopes GF (2022) Effects of long-term exposure to MST‐312 on Lung cancer cells tumorigenesis: role of SHH/GLI‐1 axis. Cell Biol Int 46(9):1468–1479

    Article  CAS  PubMed  Google Scholar 

  47. Rosen J, Jakobs P, Ale-Agha N, Altschmied J, Haendeler J (2020) Non-canonical functions of Telomerase Reverse transcriptase–impact on redox homeostasis. Redox Biol 34:101543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ségal-Bendirdjian E, Geli V (2019) Non-canonical roles of telomerase: unraveling the imbroglio. Front Cell Dev Biology 7:332

    Article  Google Scholar 

  49. Andrade da Mota TH, Reis Guimarães AF, Silva de Carvalho AÉ, Saldanha-de Araujo F, Pinto de Faria Lopes G, Pittella-Silva F, do Amaral Rabello D, Madureira de Oliveira D (2021) Effects of in vitro short-and long-term treatment with telomerase inhibitor in U-251 glioma cells. Tumor Biology 43(1):327–340

    Article  PubMed  Google Scholar 

  50. Wang B, Jiang J, Zhang Y, Shen Y, Wu L, Tang S, Lin S (2021) Combination of HDE and BIIB021 efficiently inhibits cell proliferation and induces apoptosis via downregulating hTERT in myelodysplastic syndromes. Experimental and Therapeutic Medicine 21(5):1–10

    Article  Google Scholar 

  51. Gurung RL, Lim HK, Venkatesan S, Lee PSW, Hande MP (2014) Targeting DNA-PKcs and telomerase in brain tumour cells. Mol Cancer 13(1):1–14

    Article  CAS  Google Scholar 

  52. Gurung RL, Lim SN, Low GKM, Hande MP (2014) MST-312 alters telomere dynamics, gene expression profiles and growth in human Breast cancer cells. Lifestyle Genomics 7(4–6):283–298

    Article  CAS  Google Scholar 

  53. Serrano D, Bleau A-M, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, Calvo A (2011) Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in Lung cancer. Mol Cancer 10(1):1–15

    Article  Google Scholar 

  54. Shibata A, Jeggo PA (2021) ATM’s role in the repair of DNA double-strand breaks. Genes 12(9):1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Priya B, Ravi S, Kirubakaran S (2023) : Targeting ATM and ATR for cancer therapeutics: inhibitors in clinic. Drug Discovery Today :103662

  56. Medová M, Medo M, Hovhannisyan L, Muñoz-Maldonado C, Aebersold DM, Zimmer Y (2020) DNA-PK in human malignant disorders: mechanisms and implications for pharmacological interventions. Pharmacol Ther 215:107617

    Article  PubMed  Google Scholar 

  57. Katoueezadeh M, Pilehvari N, Fatemi A, Hassanshahi G, Torabizadeh SA (2021) Inhibition of DNA damage response pathway using combination of DDR pathway inhibitors and radiation in treatment of acute lymphoblastic Leukemia cells. Future Oncol 17(21):2803–2816

    Article  CAS  PubMed  Google Scholar 

  58. Fatemi A, Safa M, Kazemi A (2015) MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway. Tumor Biology 36(11):8425–8437

    Article  CAS  PubMed  Google Scholar 

  59. Yang C, Wang Q, Liu X, Cheng X, Jiang X, Zhang Y, Feng Z, Zhou P (2016) NU7441 enhances the radiosensitivity of Liver cancer cells. Cell Physiol Biochem 38(5):1897–1905

    Article  CAS  PubMed  Google Scholar 

  60. Damia G (2020) Targeting DNA-PK in cancer. Mutat Research/Fundamental Mol Mech Mutagen 821:111692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are willing to express their sincere thanks for the support provided by the Kerman University of Medical Sciences for this project.

Funding

This study was supported by grant No. 97000840 from the Kerman University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Maryam Katoueezadeh: Investigation, Writing- Original draft preparation, Visualization, Methodology. Parisa Maleki: Methodology, Writing- Reviewing and Editing. Seyedeh Atekeh Torabizadeh: Methodology, Writing- Reviewing and Editing. Alireza Farsinejad: Resources, Formal analysis, Writing- Reviewing and Editing. Roohollah Mirzaee Khalilabadi: Methodology, Writing- Reviewing and Editing. Hajar Mardani Valandani: Methodology, Writing- Reviewing and Editing. Ismaila Olanrewaju Nurain: Methodology, Writing- Reviewing and Editing. Muhammad Hossein Ashoub: Formal analysis, Methodology, Writing- Reviewing and Editing. Ahmad Fatemi: Conceptualization, Supervision, Methodology, Validation, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Ahmad Fatemi.

Ethics declarations

Ethics approval and consent to participate

The study gained the approval of the ethics committee of the Kerman University of Medical Sciences with the ethical approval code IR.KMU.REC.1397.589. All methods were performed following the relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoueezadeh, M., Maleki, P., Torabizadeh, S.A. et al. Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Mol Biol Rep 51, 163 (2024). https://doi.org/10.1007/s11033-023-09087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09087-9

Keywords

Navigation