Skip to main content
Log in

Detection of SARS-CoV-2 spike protein D614G mutation using μTGGE

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 25 April 2024

This article has been updated

Abstract

Background

The accurate and expeditious detection of SARS-CoV-2 mutations is critical for monitoring viral evolution, assessing its impact on transmission, virulence, and vaccine efficacy, and formulating public health interventions. In this study, a detection system utilizing micro temperature gradient gel electrophoresis (μTGGE) was developed for the identification of the D614 and G614 variants of the SARS-CoV-2 spike protein.

Methods

The in vitro synthesized D614 and G614 gene fragments of the SARS-CoV-2 spike protein were amplified via polymerase chain reaction and subjected to μTGGE analysis.

Results

The migration patterns exhibited by the D614 and G614 variants on the polyacrylamide gel were distinctly dissimilar and readily discernible by μTGGE. In particular, the mid-melting pattern of D614 was shorter than that of G614.

Conclusions

Our results demonstrate the capability of μTGGE for the rapid, precise, and cost-effective detection of SARS-CoV-2 spike protein D614 and G614 variants without the need for sequencing. Therefore, this approach holds considerable potential for use in point-of-care mutation assays for SARS-CoV-2 and other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available in case of need.

Change history

Abbreviations

CCM:

Chemical cleavage of mismatch

COVID-19:

Coronavirus disease

DGGE:

Denaturing temperature gel electrophoresis

DHPLC:

Denaturing high-performance liquid chromatography

HA:

Heteroduplex analysis

μTGGE:

Micro temperature gradient gel electrophoresis

PCR:

Polymerase chain reaction

PTT:

Protein truncation test

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SSCP:

Single-strand conformation polymorphism

ssDNA:

Single-stranded DNA

TGGE:

Temperature gradient gel electrophoresis

T m :

Melting temperature

References

  1. Liu YC, Kuo RL, Shih SR (2020) COVID-19: the first documented coronavirus pandemic in history. Biomed J 43:328–333. https://doi.org/10.1016/j.bj.2020.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452. https://doi.org/10.1038/s41591-020-0820-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY (2021) Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592:116–121. https://doi.org/10.1038/s41586-020-2895-3

    Article  CAS  PubMed  Google Scholar 

  4. Gazali FM, Nuhamunada M, Nabilla MR, Supriyati E, Hakim MS, Arguni E, Daniwijaya EW, Nuryastuti T, Haryana SM, Wibawa T, Wijayanti N (2021) Detection of SARS-CoV-2 spike protein D614G mutation by qPCR-HRM analysis. Heliyon 7:e07936. https://doi.org/10.1016/j.heliyon.2021.e07936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meng Q, Wang X, Wang Y, Dang L, Liu X, Ma X, Chi T, Wang X, Zhao Q, Yang G, Liu M, Huang X, Ma P (2021) Detection of the SARS-CoV-2 D614G mutation using engineered Cas12a guide RNA. Biotechnol J 16:e2100040. https://doi.org/10.1002/biot.202100040

    Article  CAS  PubMed  Google Scholar 

  6. Crossley BM, Bai J, Glaser AL, Maes RK, Porter E, Killian ML, Clement T, Toohey-Kurth KL (2020) Guidelines for sanger sequencing and molecular assay monitoring. J Vet Diagn Investig 32:767–775. https://doi.org/10.1177/1040638720905833

    Article  CAS  Google Scholar 

  7. Mardis E (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12:213–218. https://doi.org/10.1038/nprot.2016.182

    Article  CAS  PubMed  Google Scholar 

  8. Eren K, Taktakoğlu N, Pirim I (2022) DNA sequencing methods: from past to present. Eurasian J Emerg Med 54:47–56. https://doi.org/10.5152/eurasianjmed.2022.22280

    Article  CAS  Google Scholar 

  9. Sloan DB, Broz AK, Sharbrough J, Wu Z (2018) Detecting rare mutations and DNA gamage with sequencing-based methods. Trends Biotechnol 36:729–740. https://doi.org/10.1016/j.tibtech.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strathdee F, Free A (2013) Denaturing gradient gel electrophoresis (DGGE). Methods Mol Biol 1054:145–157. https://doi.org/10.1007/978-1-62703-565-1_9

    Article  CAS  PubMed  Google Scholar 

  11. Pasookhush P, Usmani A, Suwannahong K, Palittapongarnpim P, Rukseree K, Ariyachaokun K, Buates S, Siripattanapipong S, Ajawatanawong P (2021) Single-strand conformation polymorphism fingerprint method for dictyostelids. Front Microbiol 12:708685. https://doi.org/10.3389/fmicb.2021.708685

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kakui H, Yamazaki M, Shimizu KK (2021) PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes. Sci Rep 11:20741. https://doi.org/10.1038/s41598-021-99641-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabone T, Sallmann G, Cotton RG (2009) The chemical cleavage of mismatch for the detection of mutations in long DNA fragments. Methods Mol Biol 578:223–234. https://doi.org/10.1007/978-1-60327-411-1_14

    Article  CAS  PubMed  Google Scholar 

  14. Hauss O, Müller O (2007) The protein truncation test in mutation detection and molecular diagnosis. Methods Mol Biol 375:151–164. https://doi.org/10.1007/978-1-59745-388-2_8

    Article  CAS  PubMed  Google Scholar 

  15. Colasuonno P, Incerti O, Lozito ML, Simeone R, Gadaleta A, Blanco A (2016) DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet 17:43. https://doi.org/10.1186/s12863-016-0350-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruchika TT, Biyani M (2020) A nonsequencing approach for the rapid detection of RNA editing. J Vis Exp 182:e63591. https://doi.org/10.3791/63591-v

    Article  Google Scholar 

  17. Agarwal T, Komazaki S, Sharma H, Biyani M (2014) Rapid and molecular discrimination of host-specific fungal plant pathogens in pulse crops using genome profiling. Curr Sci 107:1704–1710

    CAS  Google Scholar 

  18. Kumari P, Gautam SG, Baba M, Tsukiashi M, Matsuoka K, Yasukawa K, Nishigaki K (2017) DNA-based mutation assay GPMA (genome profiling-based mutation assay): reproducibility, parts-per-billion scale sensitivity, and introduction of a mammalian-cell-based approach. J Biochem 162:395–401. https://doi.org/10.1093/jb/mvx043

    Article  CAS  PubMed  Google Scholar 

  19. Biyani M, Yasukawa K (2022) A non-sequencing approach for rapid RNA testing of SARS-CoV-2 variants using RICCA and PalmPAGE system. J IEIE Jpn 42:109–112. https://doi.org/10.14936/ieiej.42.109

    Article  Google Scholar 

  20. Dwight D, Palais R, Wittwer CT (2011) uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics 27:1019–1020. https://doi.org/10.1093/bioinformatics/btr065

    Article  CAS  PubMed  Google Scholar 

  21. Nishigaki K, Saito A, Takashi H, Naimuddin M (2000) Whole genome sequence-enabled prediction of sequences performed for random PCR products of Escherichia coli. Nucleic Acids Res 28:1879–1884. https://doi.org/10.1093/nar/28.9.1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biyani M, Nishigaki K (2001) Hundredfold productivity of genome analysis by introduction of microtemperature-gradient gel electrophoresis. Electrophoresis 22:23–28. https://doi.org/10.1002/1522-2683(200101)22:1%3c23:AID-ELPS23%3e3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Emi Arikawa and Mr. Masayuki Yamagata for technical assistance.

Funding

This work was supported in part by Grants-in-Aid for Scientific Research (no. 23KJ1201 for K.J., no. 18KK0285 for T.T. and K.Y., 18K19839 for M.B. and K.Y., and no. 22H03332 for T.T. and K.Y.) from Japan Society for the Promotion of Science, Emerging/re-emerging infectious disease project of Japan (grant no. 20he0622020h0001 for T.T. and K.Y. and 23hk0302011h0203 for M.B. and K.K.) from Japan Agency for Medical Research and Development, and A-Step (no. JPMJTR20UU for K.Y.) from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Contributions

KMJ, MB, and KY designed the research; KMJ, KM, VS, KS, RS, MB, KY performed the research; KMJ, MB, TT, and KY analyzed data; KMJ, MB, and KY wrote the manuscript.

Corresponding authors

Correspondence to Manish Biyani or Kiyoshi Yasukawa.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interests.

Research involving human and animal rights

No experiment was conducted on animals in this study.

Consent for publication

All authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The figure 1 has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juma, K.M., Morimoto, K., Sharma, V. et al. Detection of SARS-CoV-2 spike protein D614G mutation using μTGGE. Mol Biol Rep 51, 289 (2024). https://doi.org/10.1007/s11033-023-09065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09065-1

Keywords

Navigation