Skip to main content

Advertisement

Log in

Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus’ gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data is associated with this manuscript.

References

  1. Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3:200

    Article  PubMed  PubMed Central  Google Scholar 

  2. D’Agostino A, Di Marco G, Rubini M, Marvelli S, Rizzoli E, Canini A, Gismondi A (2021) Environmental implications and evidence of natural products from dental calculi of a Neolithic-Chalcolithic community (central Italy). Sci Rep 11:10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, De La Rasilla M, Lalueza-Fox C (2012) Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617–626

    Article  CAS  PubMed  Google Scholar 

  4. Rasool Hassan B (2012) Medicinal plants (importance and uses). Pharmaceut Anal Acta 3:2153–2435

    Article  Google Scholar 

  5. Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R (2015) The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. Int J Clin Med 6:635

    Article  Google Scholar 

  6. Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F (2020) Worldwide research trends on medicinal plants. Int J Environ Res Pub He 17:3376

    Article  Google Scholar 

  7. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen S-L, Yu H, Luo H-M, Wu Q, Li C-F, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Med 11:37

    Article  Google Scholar 

  10. Chandra H, Kumari P, Yadav S (2019) Evaluation of aflatoxin contamination in crude medicinal plants used for the preparation of herbal medicine. Orient Pharm Exp Med 19:137–143

    Article  CAS  Google Scholar 

  11. Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H (2018) Medicinal plants: Past history and future perspective. J HerbMed Pharmacol. https://doi.org/10.15171/jhp.2018.01

    Article  Google Scholar 

  12. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015:951–969

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alami MM, Ouyang Z, Zhang Y, Shu S, Yang G, Mei Z, Wang X (2022) The current developments in medicinal plant genomics enabled the diversification of secondary metabolites’ biosynthesis. Int J Mol Sci 23:15932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, Islam MT, Daştan SD, Kumar M, Butnariu M (2022) Biosynthesis of secondary metabolites based on the regulation of microRNAs. BioMed Res Int. https://doi.org/10.1155/2022/9349897

    Article  PubMed  PubMed Central  Google Scholar 

  15. Twaij BM, Hasan MN (2022) Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol 13:4–14

    Article  CAS  Google Scholar 

  16. Rehab AH, Amira AE-A (2018) Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In: Philip FB (ed) Herbal Medicine. IntechOpen, Rijeka, p Ch. 2

  17. Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S (2020) Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites 10:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao Z, Nian M, Qiao H, Li B, Zheng X (2021) Pulsatilla chinensis: A review of traditional uses, phytochemistry and pharmacology research progress. Arab J Chem 14:103403

    Article  CAS  Google Scholar 

  19. Tripathi S, Jadaun JS, Chandra M, Sangwan NS (2016) Medicinal plant transcriptomes: the new gateways for accelerated understanding of plant secondary metabolism. Plant genet resour 14:256–269

    Article  CAS  Google Scholar 

  20. Sarwat M, Nabi G, Das S, Srivastava PS (2012) Molecular markers in medicinal plant biotechnology: past and present. Crit Rev Biotechnol 32:74–92

    Article  CAS  PubMed  Google Scholar 

  21. Ganie SH, Upadhyay P, Das S, Sharma MP (2015) Authentication of medicinal plants by DNA markers. Plant Gene 4:83–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhau B (2012) Molecular markers in the improvement of the medicinal plants. Med Aromat Plants 1:e108

    Google Scholar 

  23. Yang H, Wang L, Chen H, Jiang M, Wu W, Liu S, Wang J, Liu C (2021) Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences. BMC Plant Biol 21:1–16

    Article  Google Scholar 

  24. Arumugam T, Jayapriya G, Sekar T (2019) Molecular fingerprinting of the Indian medicinal plant Strychnos minor Dennst. Biotechnol Rep 21:e00318

    Article  CAS  Google Scholar 

  25. Zheng W, Wang L, Meng L, Liu J (2008) Genetic variation in the endangered Anisodus tanguticus (Solanaceae), an alpine perennial endemic to the Qinghai–Tibetan Plateau. Genetica 132:123–129

    Article  PubMed  Google Scholar 

  26. Baruah J, Pandey SK, Begum T, Sarma N, Paw M, Lal M (2019) Molecular diversity assessed amongst high dry rhizome recovery Ginger germplasm (Zingiber officinale Roscoe) from NE-India using RAPD and ISSR markers. Ind Crops Prod 129:463–471

    Article  CAS  Google Scholar 

  27. Ma S, Khayatnezhad M, Minaeifar AA (2021) Genetic diversity and relationships among Hypericum L. species by ISSR Markers: A high value medicinal plant from Northern of Iran. Caryologia 74:97–107

    Article  Google Scholar 

  28. Kumar V, Roy BK (2018) Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci Rep 8:1–11

    Article  Google Scholar 

  29. Raja MB, Rajamani K, Suresh J, Joel AJ, Uma D (2019) Molecular characterization of Vetiver [Chrysopogon zizanioides Roberty] genotypes using ISSR markers. Med Plants-Int J Phytomed Relat Ind 11:246–252

    Google Scholar 

  30. Liu X, Cheng J, Mei Z, Wei C, Khan MA, Peng J, Fu J (2020) SCAR marker for identification and discrimination of specific medicinal Lycium chinense Miller from Lycium species from ramp-PCR RAPD fragments. 3 Biotech 10:334

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang L, Fu S, Khan MA, Zeng W, Fu J (2013) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. Springerplus 2:1–8

    Article  CAS  Google Scholar 

  32. Kim Y, Choi S-J, Choi C (2017) An efficient PCR-RFLP method for the rapid identification of Korean Pyropia Species. Molecules 22:2182

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu K, Liu Y, Yang B, Kung Y, Chang K, Lee M (2022) Rapid discrimination of the native medicinal plant Adenostemma lavenia from its adulterants using PCR-RFLP. PeerJ 10:e13924

    Article  PubMed  PubMed Central  Google Scholar 

  34. El-Demerdash E-SS, Elsherbeny EA, Salama YAM, Ahmed MZ (2019) Genetic diversity analysis of some Egyptian Origanum and Thymus species using AFLP markers. J Genet Eng Biotechnol 17:1–11

    Article  Google Scholar 

  35. Bhattacharyya P, Ghosh S, Mandi SS, Kumaria S, Tandon P (2017) Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot 109:214–222

    Article  CAS  Google Scholar 

  36. Hadipour M, Kazemitabar SK, Yaghini H, Dayani S (2020) Genetic diversity and species differentiation of medicinal plant Persian Poppy (Papaver bracteatum L.) using AFLP and ISSR markers. Ecol Genet Genom 16:100058

    Google Scholar 

  37. Makki RM, Saeedi AA, Khan TK, Ali HM, Ramadan AM (2019) Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. Biotechnol Biotechnol Equip 33:419–428

    Article  CAS  Google Scholar 

  38. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics. https://doi.org/10.1155/2012/728398

    Article  PubMed  PubMed Central  Google Scholar 

  39. Do HDK, Jung J, Hyun J, Yoon SJ, Lim C, Park K, Kim J-H (2019) The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data. Mol Biol Rep 46:3287–3297

    Article  CAS  PubMed  Google Scholar 

  40. Cui Y, Nie L, Sun W, Xu Z, Wang Y, Yu J, Song J, Yao H (2019) Comparative and phylogenetic analyses of ginger (Zingiber officinale) in the family Zingiberaceae based on the complete chloroplast genome. Plants 8:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao X, Su Q, Yao B, Yang W, Ma W, Yang B, Liu C (2022) Development of EST-SSR markers related to polyphyllin biosynthesis reveals genetic diversity and population structure in Paris polyphylla. Diversity 14:589

    Article  Google Scholar 

  42. Wu J, Cai C, Cheng F, Cui H, Zhou H (2014) Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol Breed 34:1853–1866

    Article  CAS  Google Scholar 

  43. Vidya V, Prasath D, Snigdha M, Gobu R, Sona C, Maiti CS (2021) Development of EST-SSR markers based on transcriptome and its validation in ginger (Zingiber officinale Rosc.). Plos one 16:e0259146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain A, Parihar DK (2019) Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation. Biocatal Agric Biotechnol 18:101033

    Article  Google Scholar 

  45. Balada C, Castro M, Fassio C, Zamora A, Marchant MJ, Acevedo W, Guzmán L (2021) Genetic diversity and biological activity of Curcuma longa ecotypes from Rapa Nui using molecular markers. Saudi J Biol Sci 28:707–716

    Article  CAS  PubMed  Google Scholar 

  46. Pathak MR, Mohamed AA, Farooq M (2018) DNA barcoding and identification of medicinal plants in the kingdom of Bahrain. Am J Plant Sci 9:2757–2774

    Article  CAS  Google Scholar 

  47. Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30:25–35

    Article  PubMed  Google Scholar 

  48. Moon B, Kim W, Ji Y, Lee Y, Kang Y, Choi G (2016) Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae Tuber, and common adulterants via universal DNA barcode sequences. Genet Mol Res. https://doi.org/10.4238/gmr.15017064

    Article  PubMed  Google Scholar 

  49. Sarker SS, Ahmed KM, Tanny T, Nasrin S, Rahman AM, Das KC, Alam I (2023) Molecular identification and high fidelity micropropagation of shell ginger (Alpinia zerumbet). All Life 16:2169960

    Article  Google Scholar 

  50. Safhi FA, ALshamrani SM, Jalal AS, El-Moneim DA, Alyamani AA, Ibrahim AA (2022) Genetic characterization of some Saudi Arabia’s accessions from Commiphora gileadensis using Physio-biochemical parameters, molecular markers, DNA barcoding analysis and relative gene expression. Genes 13:2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borin M, Palumbo F, Vannozzi A, Scariolo F, Sacilotto GB, Gazzola M, Barcaccia G (2021) Developing and testing molecular markers in Cannabis sativa (Hemp) for their use in variety and dioecy assessments. Plants 10:2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu Y, Tian S, Li R, Huang X, Li F, Ge F, Huang W, Zhou Y (2021) Transcriptome characterization and Identification of molecular markers (SNP, SSR, and Indels) in the medicinal plant Sarcandra glabra spp. Biomed Res Int 2021:9990910

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang L, Chao L, Su X, Wang C, Dong C, Chen S (2021) High-frequency in vitro plantlet regeneration in Lilium davidii var. unicolour Salisb, an important edible and medicinal plant, and confirmation of genetic fidelity of regeneration plantlets using ISSR markers. Plant Biotechnol Rep 15:435–446

    Article  CAS  Google Scholar 

  54. Moon BC, Lee YM, Kim WJ, Ji Y, Kang YM, Choi G (2016) Development of molecular markers for authentication of the medicinal plant species Patrinia by random amplified polymorphic DNA (RAPD) analysis and multiplex-PCR. Hortic Environ Biotechnol 57:182–190

    Article  Google Scholar 

  55. Zheng K, Cai Y, Chen W, Gao Y, Jin J, Wang H, Feng S, Lu J (2021) Development, identification, and application of a germplasm specific SCAR marker for Dendrobium officinale Kimura et Migo. Front Plant Sci. https://doi.org/10.3389/fpls.2021.669458

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hao J, Jiao K, Yu C, Guo H, Zhu Y, Yang X, Zhang S, Zhang L, Feng S, Song Y (2018) Development of SCoT-based SCAR marker for rapid authentication of Taxus media. Biochem Genet 56:255–266

    Article  CAS  PubMed  Google Scholar 

  57. Feng S, Zhu Y, Yu C, Jiao K, Jiang M, Lu J, Shen C, Ying Q, Wang H (2018) Development of species-specific SCAR markers, based on a SCoT analysis, to authenticate Physalis (Solanaceae) species. Front Genet 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sanghamitra S, Umakanta N (2017) Evaluation of Genetic Diversity in Chlorophytum borivilianum (Santp. and Fernan.) Using Molecular Markers: An Endangered Medicinal Plant. In: Hany AE-S (ed) Active Ingredients from Aromatic and Medicinal Plants. IntechOpen, Rijeka, p Ch. 4

  59. Borsai O, Hârța M, Szabo K, Kelemen C-D, Andrecan FA, Codrea M-M, Clapa D (2020) Evaluation of genetic fidelity of in vitro-propagated blackberry plants using RAPD and SRAP molecular markers. Hortic Sci 47:21–27

    Article  CAS  Google Scholar 

  60. Hamouda M (2019) Molecular analysis of genetic diversity in population of Silybum marianum (L.) Gaertn in Egypt. J Genet Eng Biotechnol 17:1–9

    Article  Google Scholar 

  61. Sharma N, Kaur R, Era V (2016) Potential of RAPD and ISSR markers for assessing genetic diversity among Stevia rebaudiana Bertoni accessions. Indian J Biotechnol 15:95–100

    Google Scholar 

  62. Afiah S, Ibtisam H, Lamiaa Z (2017) Molecular analysis of some endemic and near-endemic medicinal plants located at Saint Katherine. Egypt IOSR J Biotechnol Biochem 3:5–13

    Article  Google Scholar 

  63. Nyrén P (2007) The history of pyrosequencing®. Pyrosequencing® Protocols. Springer, pp 1–13

  64. Jia J, Xu Z, Xin T, Shi L, Song J (2017) Quality control of the traditional patent medicine Yimu Wan based on SMRT sequencing and DNA barcoding. Front Plant Sci 8:926

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gupta P, Goel R, Agarwal AV, Asif MH, Sangwan NS, Sangwan RS, Trivedi PK (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:1–13

    Article  CAS  Google Scholar 

  66. Zhou Q, Wang X, Xu M, Cao F, Yu F, Xu L (2016) Development and characterization of novel microsatellite markers for Ginkgo biloba using 454 pyrosequencing. Genet Mol Res. https://doi.org/10.4238/gmr.15017385

    Article  PubMed  Google Scholar 

  67. Mao C, Zhang F, Li X, Yang T, Zhao Q, Wu Y (2023) Complete chloroplast genome sequences of Myristicaceae species with the comparative chloroplast genomics and phylogenetic relationships among them. PloS one 18:e0281042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bose Mazumdar A, Chattopadhyay S (2016) Sequencing, de novo assembly, functional annotation and analysis of Phyllanthus amarus leaf transcriptome using the Illumina platform. Front Plant Sci 6:1199

    Article  PubMed  PubMed Central  Google Scholar 

  69. Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24:51–58

    CAS  PubMed  Google Scholar 

  70. Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C (2019) Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. J Plant Res 132:419–429

    Article  CAS  PubMed  Google Scholar 

  71. Yang K, Yang L, Fan W, Long GQ, Xie SQ, Meng ZG, Zhang GH, Yang SC, Chen JW (2019) Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. Physiol Plant 167:597–612

    Article  CAS  PubMed  Google Scholar 

  72. Chakrabarty D, Chauhan PS, Chauhan AS, Indoliya Y, Lavania UC, Nautiyal CS (2015) De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) roberty. Sci Rep 5:1–13

    Article  Google Scholar 

  73. Singewar K, Kersten B, Moschner CR, Hartung E, Fladung M (2021) Transcriptome analysis of North American sweet birch (Betula lenta) revealed a higher expression of genes involved in the biosynthesis of secondary metabolites than European silver birch (B. pendula). J Plant Res 134:1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chakraborty A, Mahajan S, Jaiswal SK, Sharma VK (2021) Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Commun Biol 4:1–12

    Article  Google Scholar 

  75. Choudhri P, Rani M, Sangwan RS, Kumar R, Kumar A, Chhokar V (2018) De novo sequencing, assembly and characterization of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. BMC Genomics 19:1–21

    Article  Google Scholar 

  76. Mehmood F, Abdullah UZ, Bao Y, Poczai P, Mirza B (2020) Comparative plastomics of Ashwagandha (Withania, Solanaceae) and identification of mutational hotspots for barcoding medicinal plants. Plants 9:752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mahajan S, Chakraborty A, Sil T, Sharma VK (2021) Genome sequencing and assembly of Tinospora cordifolia (Giloy) plant. bioRxiv 19:33

    Google Scholar 

  78. Harini P, Balaji R, Parani M (2021) The complete chloroplast genome of Ocimum tenuiflorum L. subtype Rama Tulsi and its phylogenetic analysis. Mitochondrial DNA Part B 6:2224–2226

    Article  PubMed  PubMed Central  Google Scholar 

  79. Polaiah AC, Damor PR, Reddy RN, Manivel P, Shivakumara KT, Suthar MK, Thondaiman V, Manjesh GN, Bindu KH, Kumar J (2023) Development of genomic SSR markers in Gymnema sylvestre (Retz.) R.Br. ex. Sm. using next generation DNA sequencing and their application in genetic diversity analysis. J Appl Res Med Aromat Plants 34:100455

    CAS  Google Scholar 

  80. Pan J, Huang C, Yao W, Niu T, Yang X, Wang R (2023) Full-length transcriptome, proteomics and metabolite analysis reveal candidate genes involved triterpenoid saponin biosynthesis in Dipsacus asperoides. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1134352

    Article  PubMed  PubMed Central  Google Scholar 

  81. Banerjee RP, Tiwari GJ, Joshi B, Jena SN, Sidhu OP, Meena B, Rana TS, Barik SK (2023) De Novo Hybrid assembled draft Genome of Commiphora wightii (Arnott) bhandari reveals key enzymes involved in phytosterol biosynthesis. Life 13:662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Protoc Mol Biol 122:e59

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mohanty P, Ayachit G, Sharma P, Shaikh I, Mohanty JN, Mankad AU, Pandya H, Das J (2020) De novo sequencing and transcriptome analysis of Indian Bael (Aegle marmelos L.). Gene Rep 19:100671

    Article  CAS  Google Scholar 

  84. Xu M, Liu X, Wang JW, Teng SY, Shi JQ, Li YY, Huang MR (2017) Transcriptome sequencing and development of novel genic SSR markers for Dendrobium officinale. Mol Breed 37:1–7

    Article  Google Scholar 

  85. Raclariu-Manolică AC, Anmarkrud JA, Kierczak M, Rafati N, Thorbek BLG, Schrøder-Nielsen A, de Boer HJ (2021) DNA metabarcoding for quality control of basil, oregano, and paprika. Front Plant Sci 12:665618

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rastogi S, Kalra A, Gupta V, Khan F, Lal RK, Tripathi AK, Parameswaran S, Gopalakrishnan C, Ramaswamy G, Shasany AK (2015) Unravelling the genome of Holy basil: an “incomparable”“elixir of life” of traditional Indian medicine. BMC Genomics 16:1–15

    Article  CAS  Google Scholar 

  87. Gordo S, Pinheiro DG, Moreira EC, Rodrigues SM, Poltronieri MC, de Lemos OF, da Silva IT, Ramos RT, Silva A, Schneider H (2012) High-throughput sequencing of black pepper root transcriptome. BMC Plant Biol 12:1–9

    Article  Google Scholar 

  88. Xin T, Xu Z, Jia J, Leon C, Hu S, Lin Y, Ragupathy S, Song J, Newmaster SG (2018) Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, real-time sequencing. Acta Pharm Sin B 8:488–497

    Article  PubMed  Google Scholar 

  89. Tian J, Feng S, Liu Y, Zhao L, Tian L, Hu Y, Yang T, Wei A (2018) Single-molecule long-read sequencing of Zanthoxylum bungeanum Maxim transcriptome: identification of aroma-related genes. Forests 9:765

    Article  Google Scholar 

  90. Yang Y, Li S, Xing Y, Zhang Z, Liu T, Ao W, Bao G, Zhan Z, Zhao R, Zhang T (2022) The first high-quality chromosomal genome assembly of a medicinal and edible plant Arctium lappa. Mol Ecol Resour 22:1493–1507

    Article  CAS  PubMed  Google Scholar 

  91. Zhong F, Huang L, Qi L, Ma Y, Yan Z (2020) Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol Biol 102:477–499

    Article  CAS  PubMed  Google Scholar 

  92. Cui Y, Gao X, Wang J, Shang Z, Zhang Z, Zhou Z, Zhang K (2021) Full-length transcriptome analysis reveals candidate genes involved in terpenoid biosynthesis in Artemisia argyi. Front Genet. https://doi.org/10.3389/fgene.2021.659962

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lian X, Zhang X, Wang F, Wang X, Xue Z, Qi X (2020) Characterization of a 2, 3-oxidosqualene cyclase in the toosendanin biosynthetic pathway of Melia toosendan. Physiol Plant 170:528–536

    Article  CAS  PubMed  Google Scholar 

  94. Xu Z, Luo H, Ji A, Zhang X, Song J, Chen S (2016) Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza. Front Plant Sci 7:100

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oh J, Shin Y, Ha IJ, Lee MY, Lee S-G, Kang B-C, Kyeong D, Kim D (2018) Transcriptome profiling of two ornamental and medicinal Papaver herbs. Int J Mol Sci 19:3192

    Article  PubMed  PubMed Central  Google Scholar 

  96. Roy NS, Choi I-Y, Um T, Jeon MJ, Kim B-Y, Kim Y-D, Yu J-K, Kim S, Kim N-S (2021) Gene expression and isoform identification of PacBio full-length cDNA sequences for berberine biosynthesis in Berberis koreana. Plants 10:1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen X, Li J, Wang X, Zhong L, Tang Y, Zhou X, Liu Y, Zhan R, Zheng H, Chen W (2019) Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynthesis and regulation in Pogostemon cablin. BMC Plant Biol 19:1–18

    Article  Google Scholar 

  98. Qin S, Wu L, Wei K, Liang Y, Song Z, Zhou X, Wang S, Li M, Wu Q, Zhang K (2019) A draft genome for Spatholobus suberectus. Sci Data 6:1–9

    Article  Google Scholar 

  99. De-la-Cruz I, Hallab A, Olivares-Pinto U, Tapia-López R, Velázquez-Márquez S, Piñero D, Oyama K, Usadel B, Núñez-Farfán J (2021) Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 11:1–19

    Article  Google Scholar 

  100. Sharma T, Sharma NK, Kumar P, Panzade G, Rana T, Swarnkar MK, Singh AK, Singh D, Shankar R, Kumar S (2021) The first draft genome of Picrorhiza kurrooa, an endangered medicinal herb from Himalayas. Sci Rep 11:1–21

    Article  Google Scholar 

  101. Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C (2019) The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. Plant J 97:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li R, Xiao M, Li J, Zhao Q, Wang M, Zhu Z (2023) Transcriptome analysis of CYP450 family members in Fritillaria cirrhosa D Don and profiling of key CYP450s related to isosteroidal Alkaloid biosynthesis. Genes 14:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jeon MJ, Roy NS, Choi B-S, Oh JY, Kim Y-I, Park HY, Um T, Kim N-S, Kim S, Choi I-Y (2022) Identifying Terpenoid biosynthesis genes in Euphorbia maculata via full-length cDNA sequencing. Molecules 27:4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang J, Xu S, Mei Y, Cai S, Gu Y, Sun M, Liang Z, Xiao Y, Zhang M, Yang S (2021) A high-quality genome assembly of Morinda officinalis, a famous native southern herb in the Lingnan region of southern China. Hortic Res. https://doi.org/10.1038/s41438-021-00551-w

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liu Y, Tang Q, Cheng P, Zhu M, Zhang H, Liu J, Zuo M, Huang C, Wu C, Sun Z, Liu Z (2020) Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharm Sin B 10:374–382

    Article  CAS  PubMed  Google Scholar 

  106. Xu Z, Gao R, Pu X, Xu R, Wang J, Zheng S, Zeng Y, Chen J, He C, Song J (2020) Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genom Proteom Bioinform 18:230–240

    Article  CAS  Google Scholar 

  107. Shen Q, Zhang L, Liao Z, Wang S, Yan T, Shi P, Liu M, Fu X, Pan Q, Wang Y, Lv Z, Lu X, Zhang F, Jiang W, Ma Y, Chen M, Hao X, Li L, Tang Y, Lv G, Zhou Y, Sun X, Brodelius PE, Rose JKC, Tang K (2018) The genome of Artemisia annua Provides Insight into the evolution of Asteraceae Family and Artemisinin Biosynthesis. Mol Plant 11:776–788

    Article  CAS  PubMed  Google Scholar 

  108. Yi S, Song X, Yu W, Zhang R, Wang W, Zhao Y, Han B, Gai Y (2021) De novo assembly and Transcriptome analysis of the Momordica charantia seedlings responding to methyl jasmonate using 454 pyrosequencing. Gene Expr Patterns 40:119160

    Article  CAS  PubMed  Google Scholar 

  109. Loke K-K, Rahnamaie-Tajadod R, Yeoh C-C, Goh H-H, Mohamed-Hussein Z-A, Zainal Z, Ismail I, Noor NM (2017) Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 5:e2938

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fu S, Lei M, Zhang Y, Deng Z, Shi J, Hao D (2019) De novo transcriptome analysis of Tibetan medicinal plant Dysphania schraderiana. Genet Mol Biol 42:480–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen SL, Osbourn A, Kontogianni VG, Liu LW, Jordán MJ (2015) Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Gene 558:41–53

    Article  PubMed  Google Scholar 

  112. Zhang Y, Zheng L, Zheng Y, Zhou C, Huang P, Xiao X, Zhao Y, Hao X, Hu Z, Chen Q (2019) Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front Plant Sci 10:1274

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wei F, Tang D, Wei K, Qin F, Li L, Lin Y, Zhu Y, Khan A, Kashif MH, Miao J (2020) The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis. Sci Rep 10:12473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu M-l, Li Q, Xu J, Li X-w (2018) Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med 13:1–12

    Article  Google Scholar 

  115. Nangong Z, He X, Huang F (2020) The complete chloroplast genome sequence of medicinal plant, Artemisia lavandulaefolia YC. Mitochondrial DNA Part B 5:1194–1195

    Article  Google Scholar 

  116. Vadakkemukadiyil Chellappan B, Pr S, Vijayan S, Rajan VS, Sasi A, Nair AS (2019) High quality draft genome of Arogyapacha (Trichopus zeylanicus), an important medicinal plant endemic to western Ghats of India. G3: Genes. Genomes, Genetics 9:2395–2404

    Google Scholar 

  117. Yang Z, Huang Y, An W, Zheng X, Huang S, Liang L (2019) Sequencing and structural analysis of the complete chloroplast genome of the medicinal plant Lycium chinense Mill. Plants 8:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim J-A, Roy NS, Lee I-h, Choi A-Y, Choi B-S, Yu Y-S, Park N-i, Park K-C, Kim S, Yang H-s (2019) Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach. Genomics 111:973–979

    Article  CAS  PubMed  Google Scholar 

  119. Qiu D, Wen Y, Xie Y, Lin Q (2020) The complete chloroplast genome sequence of medicinal plant, Selaginella involvens. Mitochondrial DNA Part B 5:2605–2606

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shaw R, Tian X, Xu J (2021) Single-cell transcriptome analysis in plants: advances and challenges. Mol Plant 14:115–126

    Article  CAS  PubMed  Google Scholar 

  121. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  122. Efroni I, Ip P-L, Nawy T, Mello A, Birnbaum KD (2015) Quantification of cell identity from single-cell gene expression profiles. Genome Biol 16:1–12

    Article  CAS  Google Scholar 

  123. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12:e694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou P, Chen H, Dang J, Shi Z, Shao Y, Liu C, Fan L, Wu Q (2022) Single-cell transcriptome of Nepeta tenuifolia leaves reveal differentiation trajectories in glandular trichomes. Front Plant Sci. https://doi.org/10.3389/fpls.2022.988594

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ngo QA, Roussi F, Cormier A, Thoret S, Knossow M, Guénard D, Guéritte F (2009) Synthesis and biological evaluation of vinca alkaloids and phomopsin hybrids. J Med Chem 52:134–142

    Article  CAS  PubMed  Google Scholar 

  126. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  CAS  PubMed  Google Scholar 

  127. Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, Payne RM, Serna Guerrero DA, Yamamoto K, Vaillancourt B, Caputi L (2022) Single-cell multi-omics enabled discovery of alkaloid biosynthetic pathway genes in the medical plant Catharanthus roseus. bioRxiv. https://doi.org/10.1101/2022.07.04.498697

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang F, Yang J, Zhang N, Wu J, Si H (2022) Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci 13:919243

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gadhavi H, Patel M, Mangukia N, Shah K, Bhadresha K, Patel SK, Rawal RM, Pandya HA (2020) Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. Plant Signal Behav 15:1699265

    Article  PubMed  Google Scholar 

  130. Xia C, Zhou H, Xu X, Jiang T, Li S, Wang D, Nie Z, Sheng Q (2020) Identification and investigation of miRNAs from Gastrodia elata blume and their potential function. Front Pharmacol 11:542405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sharma A, Ruiz-Manriquez LM, Serrano-Cano FI, Reyes-Pérez PR, Tovar Alfaro CK, Barrón Andrade YE, Hernández Aros AK, Srivastava A, Paul S (2020) Identification of microRNAs and their expression in leaf tissues of guava (Psidium guajava L.) under salinity stress. Agronomy 10:1920

    Article  CAS  Google Scholar 

  132. Shi Y, Xia H, Cheng X, Zhang L (2021) Genome-wide miRNA analysis and integrated network for flavonoid biosynthesis in Osmanthus fragrans. BMC Genomics 22:1–11

    Article  CAS  Google Scholar 

  133. Yan G, Zhang J, Jiang M, Gao X, Yang H, Li L (2020) Identification of known and novel MicroRNAs in raspberry organs through high-throughput sequencing. Front Plant Sci 11:728

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kumar D, Kumar S, Ayachit G, Bhairappanavar SB, Ansari A, Sharma P, Soni S, Das J (2017) Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: a systems biology approach. Int J Mol Sci 18:1191

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sharma A, Sahu S, Kumari P, Gopi SR, Malhotra R, Biswas S (2017) Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in Homo sapiens. J Biomol Struct Dyn 35:1389–1400

    Article  CAS  PubMed  Google Scholar 

  136. Pirrò S, Matic I, Guidi A, Zanella L, Gismondi A, Cicconi R, Bernardini R, Colizzi V, Canini A, Mattei M, Galgani A (2019) Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus. Sci Rep 9:15145

    Article  PubMed  PubMed Central  Google Scholar 

  137. Padhan JK, Kumar P, Sood H, Chauhan RS (2016) Prospecting NGS-transcriptomes to assess regulation of miRNA-mediated secondary metabolites biosynthesis in Swertia chirayita, a medicinal herb of the North-Western Himalayas. Med Plants-Int J Phytomed Relat Ind 8:219–228

    Google Scholar 

  138. Prakash P, Rajakani R, Gupta V (2016) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74

    Article  CAS  PubMed  Google Scholar 

  139. Singh N, Srivastava S, Shasany AK, Sharma A (2016) Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 64:154–162

    Article  CAS  PubMed  Google Scholar 

  140. Xie W, Adolf J, Melzig MF (2017) Identification of Viscum album L. miRNAs and prediction of their medicinal values. PloS one 12:e0187776

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yang YH, Li MJ, Yi YJ, Li RF, Li CX, Yang H, Wang J, Zhou JX, Shang S, Zhang ZY (2021) Integrated miRNA-mRNA analysis reveals the roles of miRNAs in the replanting benefit of Achyranthes bidentata roots. Sci Rep 11:1–14

    Google Scholar 

  142. Basu A, Sarkar A, Maulik U (2020) Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep 10:1–15

    Article  Google Scholar 

  143. Pyrzynska K (2022) Hesperidin: a review on extraction methods, stability and biological activities. Nutrients 14(12):2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Verma AK, Kumar V, Singh S, Goswami BC, Camps I, Sekar A, Yoon S, Lee KW (2021) Repurposing potential of ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 137:111356

    Article  Google Scholar 

  145. Aras A, Türkan F, Yildiko U, Atalar MN, Kılıç Ö, Alma MH, Bursal E (2021) Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. Chem Pap 75:1133–1146

    Article  CAS  Google Scholar 

  146. Sumirtanurdin R, Sungkar S, Hisprastin Y, Sidharta KD, Nurhikmah DD (2020) Molecular docking simulation studies of curcumin and its derivatives as cyclin-dependent kinase 2 inhibitors. Turk J Pharm Sci 17:417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Suravajhala R, Parashar A, Choudhir G, Kumar A, Malik B, Nagaraj VA, Padmanaban G, Polavarapu R, Suravajhala P, Kishor P (2021) Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Netw Model Anal Health Inform Bioinform 10:1–10

    Article  Google Scholar 

  148. Razia S, Park H, Shin E, Shim K-S, Cho E, Kim S-Y (2021) Effects of Aloe vera flower extract and its active constituent isoorientin on skin moisturization via regulating involucrin expression: In vitro and molecular docking studies. Molecules 26:2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krupanidhi S, Abraham Peele K, Venkateswarulu T, Ayyagari VS, Nazneen Bobby M, John Babu D, Venkata Narayana A, Aishwarya G (2021) Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: an in silico study. J Biomol Struct Dyn 39:5799–5803

    Article  CAS  PubMed  Google Scholar 

  150. Rivero-Segura NA, Gomez-Verjan JC (2021) In silico screening of natural products isolated from Mexican Herbal Medicines against COVID-19. Biomolecules 11:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sankar M, Ramachandran B, Pandi B, Mutharasappan N, Ramasamy V, Prabu PG, Shanmugaraj G, Wang Y, Muniyandai B, Rathinasamy S (2021) In silico screening of natural phytocompounds towards identification of potential lead compounds to treat COVID-19. Front Mol Biosci 8:637122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Adejoro IA, Babatunde DD, Tolufashe GF (2020) Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: an in silico study. J Taibah Univ Sci 14:1563–1570

    Article  Google Scholar 

  153. Chtita S, Fouedjou RT, Belaidi S, Djoumbissie LA, Ouassaf M, Qais FA, Bakhouch M, Efendi M, Tok TT, Bouachrine M, Lakhlifi T (2022) In silico investigation of phytoconstituents from Cameroonian medicinal plants towards COVID-19 treatment. Struct Chem 33:1799–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Singh K, Pandey N, Ahmad F, Upadhyay TK, Islam MH, Alshammari N, Saeed M, Al-Keridis LA, Sharma R (2022) Identification of novel inhibitor of enoyl-acyl carrier protein reductase (InhA) enzyme in Mycobacterium tuberculosis from Plant-derived metabolites: an In silico study. Antibiotics 11:1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chowdhury P (2021) In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn 39:6792–6809

    Article  CAS  PubMed  Google Scholar 

  156. Mir WR, Bhat BA, Rather MA, Muzamil S, Almilaibary A, Alkhanani M, Mir MA (2022) Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex sweet from Kashmir Himalaya. Sci Rep 12:12547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Prasanth D, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C (2021) In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J Biomol Struct Dyn 39:4618–4632

    Article  CAS  PubMed  Google Scholar 

  158. Utami W, Aziz H, Fitriani I, Zikri A, Mayasri A, Nasrudin D (2020) In silico anti-inflammatory activity evaluation of some bioactive compound from Ficus religiosa through molecular docking approach. In: Journal of Physics: Conference Series. IOP Publishing, p 012024

  159. Mahmoudi S, Balmeh N, Mohammadi N, Sadeghian-Rizi T (2021) The novel drug discovery to combat COVID-19 by repressing important virus proteins involved in pathogenesis using medicinal herbal compounds. Avicenna J Med Biotechnol 13:107

    PubMed  PubMed Central  Google Scholar 

  160. Mehta J, Rolta R, Dev K (2022) Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. J Ethnopharmacol 282:114589

    Article  CAS  PubMed  Google Scholar 

  161. Anjum F, Mohammad T, Almalki AA, Akhtar O, Abdullaev B, Hassan MI (2021) Phytoconstituents and Medicinal plants for anticancer drug discovery: computational identification of potent inhibitors of PIM1 kinase. OMICS: J Integr Plant 25:580–590

    Article  CAS  Google Scholar 

  162. Khotimah H, Setiawan A, Rita CI, Mardiyah M, Ali A, Sukatman MP, Retnaningtyas E, Ismail DDL, Widasmara D, Nurseta T (2021) In silico studies of natural compounds of Centella Asiatica as anti-aging and wound healing agents. In: AIP Conference Proceedings. AIP Publishing LLC, p 030031

  163. Bārzdiņa A, Paulausks A, Bandere D, Brangule A (2022) The potential use of herbal fingerprints by means of HPLC and TLC for characterization and identification of herbal extracts and the distinction of latvian native medicinal plants. Molecules 27:2555

    Article  PubMed  PubMed Central  Google Scholar 

  164. Li Y, Shen Y, Yao C-l, Guo D-a (2020) Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: a review. J Pharm Biomed Anal 185:113215

    Article  CAS  PubMed  Google Scholar 

  165. Kharbach M, Marmouzi I, El Jemli M, Bouklouze A, Vander Heyden Y (2020) Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—a review. J Pharm Biomed Anal 177:112849

    Article  CAS  PubMed  Google Scholar 

  166. Rohman A, Putri AR (2019) The Chemometrics techniques in combination with instrumental analytical methods applied in halal authentication analysis. Indones J Chem 19:11

    Article  Google Scholar 

  167. Geraldes CF (2020) Introduction to infrared and raman-based biomedical molecular imaging and comparison with other modalities. Molecules 25:5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Noviana E, Indrayanto G, Rohman A (2022) Advances in fingerprint analysis for standardization and quality control of herbal medicines. Front pharmacol. https://doi.org/10.3389/fphar.2022.853023

    Article  PubMed  PubMed Central  Google Scholar 

  169. Krysa M, Szymańska-Chargot M, Zdunek A (2022) FT-IR and FT-Raman fingerprints of flavonoids–a review. Food Chem 393:133430

    Article  CAS  PubMed  Google Scholar 

  170. Liu LC, Wang XY, Li LN, Yang L, Wang ZT (2022) Research advances of chemical constituents and analytical methods of Citri Reticulatae Pericarpium Viride and Citri Reticulatae Pericarpium. Zhongguo Zhong Yao Za Zhi 47:2866–2879

    PubMed  Google Scholar 

  171. Mabasa X, Mathomu L, Madala N, Musie E, Sigidi M (2021) Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem Res Int. https://doi.org/10.1155/2021/2854217

    Article  PubMed  PubMed Central  Google Scholar 

  172. Donkor S, Larbie C, Komlaga G, Emikpe BO (2019) Phytochemical, antimicrobial, and antioxidant profiles of Duranta erecta L. Parts Biochem Res Int 2019:8731595

    PubMed  Google Scholar 

  173. Beć KB, Grabska J, Huck CW (2020) Near-infrared spectroscopy in bio-applications. Molecules 25:2948

    Article  PubMed  PubMed Central  Google Scholar 

  174. Türker-Kaya S, Huck CW (2017) A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22:168

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kasemsumran S, Apiwatanapiwat W, Ngowsuwan K, Jungtheerapanich S (2021) Rapid selection of Andrographis paniculata medicinal plant materials based on major bioactive using near-infrared spectroscopy. Chem Pap 75:5633–5644

    Article  CAS  Google Scholar 

  176. Zhuang X, Su M, Sun Y, Yuan M, Wang L, Zhang Z, Sun J, Zang H, Jiang H, Nie L (2022) A calibration method based on model updating strategy for the quantitative model of Radix astragali extract. Microchem J 181:107690

    Article  CAS  Google Scholar 

  177. Chandra S (2019) Fourier transform infrared (Ft-Ir) spectroscopic analysis of Nicotiana plumbaginifolia (Solanaceae). J Med Plant Res 7:82–85

    Google Scholar 

  178. Mohamad R, Winda R, Rita Merisa S, Utami Dyah S, Wulan Tri W, Eti R (2021) FTIR-based fingerprinting combined with chemometrics for discrimination of Sonchus arvensis leaves extracts of various extracting solvents and the correlation with its antioxidant activity. Indones J Pharm. https://doi.org/10.22146/ijp.755

    Article  Google Scholar 

  179. Sahoo MR, Umashankara MS (2023) FTIR Based metabolomics profiling and fingerprinting of some medicinal plants: an attempt to develop an approach for quality control and standardization of herbal materials. Pharmacognosy Res. https://doi.org/10.5530/097484900288

    Article  Google Scholar 

  180. Hellal K, Mediani A, Ismail IS, Tan CP, Abas F (2021) 1H NMR-based metabolomics and UHPLC-ESI-MS/MS for the investigation of bioactive compounds from Lupinus albus fractions. Food Res Int 140:110046

    Article  CAS  PubMed  Google Scholar 

  181. Ali S, Badshah G, Ali U, Siddique Afridi M, Shamim A, Khan A, Luiz Felipe Soares F, Rocha Alencar Menezes L, Theodoro Rezende V, Barison A (2022) Leaf tissue metabolomics fingerprinting of Citronella gongonha Mart. by 1H HR-MAS NMR. Sci Rep 12:17624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yin M, Wang J, Huang H, Huang Q, Fu Z, Lu Y (2020) Analysis of Flavonoid compounds by terahertz spectroscopy combined with chemometrics. ACS Omega 5(29):18134–18141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fu X, Liu Y, Chen Q, Fu Y, Cui TJ (2022) Applications of terahertz spectroscopy in the detection and recognition of substances. Front Phys. https://doi.org/10.3389/fphy.2022.869537

    Article  Google Scholar 

  184. Liang J, Guo Q, Chang T, Li K, Cui H-L (2018) Reliable origin identification of Scutellaria baicalensis based on terahertz time-domain spectroscopy and pattern recognition. Optik 174:7–14

    Article  CAS  Google Scholar 

  185. Bin L, Zhao-yang H, Hui-zhou C, A-kun Y, Ai-guo OY (2022) Identification of different parts of Panax notoginseng based on terahertz spectroscopy. J Anal Sci Technol 13(1):18

    Article  CAS  Google Scholar 

  186. Sánchez M, González-Burgos E, Divakar PK, Gómez-Serranillos MP (2020) DNA-based authentication and metabolomics analysis of medicinal plants samples by DNA barcoding and ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-MS). Plants 9:1601

    Article  PubMed  PubMed Central  Google Scholar 

  187. Azadnia R, Al-Amidi MM, Mohammadi H, Cifci MA, Daryab A, Cavallo E (2022) An AI based approach for medicinal plant identification using deep CNN based on global average pooling. Agronomy 12:2723

    Article  Google Scholar 

  188. Azadnia R, Jahanbakhshi A, Rashidi S, Bazyar P (2022) Developing an automated monitoring system for fast and accurate prediction of soil texture using an image-based deep learning network and machine vision system. Measurement 190:110669

    Article  Google Scholar 

  189. Ziyaee P, Farzand Ahmadi V, Bazyar P, Cavallo E (2021) Comparison of different image processing methods for segregation of peanut (Arachis hypogaea L.) seeds infected by aflatoxin-producing fungi. Agronomy 11:873

    Article  CAS  Google Scholar 

  190. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629

    Article  PubMed  PubMed Central  Google Scholar 

  191. Paulson A, Ravishankar S (2020) AI based indigenous medicinal plant identification. In: 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). IEEE, pp 57–63

  192. Thanikkal JG, Dubey AK, Thomas MT (2023) An Efficient mobile application for identification of immunity boosting medicinal plants using shape descriptor algorithm. Wirel Pers Commun 131:1189–1205

    Article  Google Scholar 

  193. Malabadi RB, Nethravathi T, Kolkar KP, Chalannavar RK, Mudigoudra B, Lavanya L, Abdi G, Baijnath H (2023) Cannabis sativa: applications of artificial intelligence and plant tissue culture for micropropagation. Int J Res Sci Innov Appl Sci 8:117–142

    Article  Google Scholar 

  194. Pushpa BR, Rani NS (2023) DIMPSAR: dataset for Indian medicinal plant species analysis and recognition. Data Brief 49:109388

    Article  Google Scholar 

  195. Blesslin Elizabeth CP, Baulkani S (2023) Novel network for medicinal leaves identification. IETE J Res 69:1772–1782

    Article  Google Scholar 

  196. Pushpanathan K, Hanafi M, Mashohor S, Fazlil Ilahi WF (2021) Machine learning in medicinal plants recognition: a review. Artif Intell Rev 54:305–327

    Article  Google Scholar 

Download references

Acknowledgements

DS and MHS acknowledge the Integral University, Lucknow, for providing all the necessary facilities to carry out this study. The Integral University manuscript communication number of this article is IU/R&D/2021-MCN0001338. DS is also thankful to the University Grants Commission, Government of India for providing fellowship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

DS gave the concept for review. DS, NM, and AS searched the available literature. DS prepared the complete draft. NM designed the figures and tables. SV gave suggestions in finalizing the draft. NM and DS gave the final touch to the draft. MHS approved the final draft.

Corresponding author

Correspondence to Mohammed Haris Siddiqui.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Mittal, N., Verma, S. et al. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review. Mol Biol Rep 51, 23 (2024). https://doi.org/10.1007/s11033-023-09057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09057-1

Keywords

Navigation