Skip to main content
Log in

Exploring the polarization of M1 and M2 macrophages in the context of skin diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Macrophages are critical components of the immune system and play vital roles in pathogen defense, immune regulation, and tissue repair. These cells exhibit different polarization states depending on environmental signals, and the M1/M2 paradigm is a useful tool for comprehending these states. This review article comprehensively presents the underlying mechanisms of M1 and M2 macrophage polarization and examines their polarization in various skin diseases. Additionally, this paper discusses therapeutic strategies that target M1 and M2 macrophage polarization in skin diseases. A more profound understanding of macrophage polarization in skin diseases could provide valuable insights for the development of innovative therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Marshall JS et al (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14(Suppl 2):49

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martinez FO et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  3. Anaya JM et al (2013) Autoimmunity: from bench to bedside. El Rosario University Press, Bogota

    Google Scholar 

  4. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol 5:614

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shapouri-Moghaddam A et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440

    Article  CAS  PubMed  Google Scholar 

  6. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(6):463–488

    Article  CAS  PubMed  Google Scholar 

  7. Cutolo M et al (2022) The role of M1/M2 macrophage polarization in rheumatoid arthritis Synovitis. Front Immunol 13:867260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbosa JN, Vasconcelos DP (2020) Macrophage response to biomaterials chap. 3. In: Mozafari M (ed) Handbook of biomaterials biocompatibility. Woodhead Publishing, Cambridge

    Google Scholar 

  9. Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during Infectious diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19061801

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thiel M et al (2010) Efficiency of T-cell costimulation by CD80 and CD86 cross-linking correlates with calcium entry. Immunology 129(1):28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arora S et al (2018) Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology 223(4–5):383–396

    Article  CAS  PubMed  Google Scholar 

  12. Ferrante CJ, Leibovich SJ (2012) Regulation of macrophage polarization and wound healing. Adv Wound Care (New Rochelle) 1(1):10–16

    Article  PubMed  Google Scholar 

  13. Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816460

    Article  Google Scholar 

  14. Sica A et al (2008) Macrophage polarization in tumour progression. Sem Cancer Biol 18(5):349–355

    Article  CAS  Google Scholar 

  15. Jayasingam SD et al (2019) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

    Article  PubMed  Google Scholar 

  16. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura K et al (2015) Orosomucoid 1 drives opportunistic infections through the polarization of monocytes to the M2b phenotype. Cytokine 73(1):8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang L-x et al (2019) M2b macrophage polarization and its roles in diseases. J Leukoc Biol 106(2):345–358

    Article  CAS  PubMed  Google Scholar 

  19. Liberale L et al (2017) Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 117(1):7–18

    Article  PubMed  Google Scholar 

  20. Chen MM et al (2016) Polarization of tissue-resident TFH-Like cells in human hepatoma bridges innate monocyte inflammation and M2b macrophage polarization. Cancer Discov 6(10):1182–1195

    Article  CAS  PubMed  Google Scholar 

  21. Locati M, Mantovani A, Sica A (2013) Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 120:163–184

    Article  CAS  PubMed  Google Scholar 

  22. Tugal D, Liao X, Jain MK (2013) Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol 33(6):1135–1144

    Article  CAS  PubMed  Google Scholar 

  23. Liu T et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4(3):281–286

    Article  CAS  PubMed  Google Scholar 

  25. Guo L et al (2020) Glutaredoxin 1 regulates macrophage polarization through mediating glutathionylation of STAT1. Thorac Cancer 11(10):2966–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goenka S, Kaplan MH (2011) Transcriptional regulation by STAT6. Immunol Res 50(1):87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khoyratty TE, Udalova IA (2018) Diverse mechanisms of IRF5 action in inflammatory responses. Int J Biochem Cell Biol 99:38–42

    Article  CAS  PubMed  Google Scholar 

  28. Ni X, Lai Y (2020) Keratinocyte: a trigger or an executor of psoriasis? J Leukoc Biol 108(2):485–491

    Article  CAS  PubMed  Google Scholar 

  29. Kamata M, Tada Y (2022) Dendritic cells and macrophages in the pathogenesis of Psoriasis. Front Immunol 13:941071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim HJ et al (2019) Decreased expression of response gene to complement 32 in psoriasis and its association with reduced M2 macrophage polarization. J Dermatol 46(2):166–168

    Article  PubMed  Google Scholar 

  31. Lu CH et al (2018) Involvement of M1 macrophage polarization in endosomal toll-like receptors activated psoriatic inflammation. Mediators Inflamm 2018:3523642

    Article  PubMed  PubMed Central  Google Scholar 

  32. Langan SM, Irvine AD, Weidinger S (2020) Atopic dermatitis. Lancet 396(10247):345–360

    Article  CAS  PubMed  Google Scholar 

  33. Homey B et al (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118(1):178–189

    Article  CAS  PubMed  Google Scholar 

  34. Grewe M et al (1998) A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19(8):359–361

    Article  CAS  PubMed  Google Scholar 

  35. Homey B et al (2007) Modulation of chemokines by staphylococcal superantigen in atopic dermatitis. Chem Immunol Allergy 93:181–194

    Article  CAS  PubMed  Google Scholar 

  36. Jetten N et al (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118

    Article  CAS  PubMed  Google Scholar 

  37. Odonwodo A, Badri T, Hariz A (2023) Scleroderma. StatPearls. StatPearls Publishing LLC, Treasure Island (FL).

    Google Scholar 

  38. Higashi-Kuwata N et al (2009) Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol 18(8):727–729

    Article  PubMed  Google Scholar 

  39. Braga TT, Agudelo JS, Camara NO (2015) Macrophages during the fibrotic process: M2 as friend and Foe. Front Immunol 6:602

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gourh P et al (2009) Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Res Ther 11(5):R147

    Article  PubMed  PubMed Central  Google Scholar 

  41. Toledo DM, Pioli PA (2019) Macrophages in systemic sclerosis: novel insights and therapeutic implications. Curr Rheumatol Rep 21(7):31

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao X et al (2022) MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol 19(4):540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang S et al (2020) Macrophage polarization in atherosclerosis. Clin Chim Acta 501:142–146

    Article  CAS  PubMed  Google Scholar 

  44. Mia S et al (2014) An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand J Immunol 79(5):305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoch M et al (2022) Network analyses reveal new insights into the effect of multicomponent Tr14 compared to single-component diclofenac in an acute inflammation model. J Inflamm. https://doi.org/10.1186/s12950-023-00335-0

    Article  Google Scholar 

  46. Sheridan A, Wheeler-Jones CPD, Gage MC (2022) The immunomodulatory effects of statins on macrophages. Immuno 2(2):317–343

    Article  Google Scholar 

  47. Dongye Z, Li J, Wu Y (2022) Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br J Cancer 127(9):1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. ScientificWorldJournal 11:2391–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leite Dantas R et al (2016) Macrophage-mediated psoriasis can be suppressed by regulatory T lymphocytes. J Pathol 240(3):366–377

    Article  CAS  PubMed  Google Scholar 

  51. Shin TH et al (2017) Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. https://doi.org/10.3390/ijms18020244

    Article  PubMed  PubMed Central  Google Scholar 

  52. Faurschou A et al (2015) Lack of effect of the glucagon-like peptide-1 receptor agonist liraglutide on psoriasis in glucose-tolerant patients–a randomized placebo-controlled trial. J Eur Acad Dermatol Venereol 29(3):555–559

    Article  CAS  PubMed  Google Scholar 

  53. Marques LJ et al (1999) Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159(2):508–511

    Article  CAS  PubMed  Google Scholar 

  54. Liu J et al (2021) New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int 21(1):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan S, Sun H (2019) Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med 17(5):3573–3579

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Al-Ghazzewi FH, Tester RF (2014) Impact of prebiotics and probiotics on skin health. Benef Microbes 5(2):99–107

    Article  CAS  PubMed  Google Scholar 

  57. Blanco P et al (2008) Dendritic cells and cytokines in human inflammatory and autoimmune Diseases. Cytokine Growth Factor Rev 19(1):41–52

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54(2):258–265

    Article  PubMed  Google Scholar 

  59. Pradhan S et al (2016) Anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology. Indian J Dermatol 61(5):469–481

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y et al (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188(5):2127–2135

    Article  CAS  PubMed  Google Scholar 

  61. Bhat GH et al (2022) Vitamin D status in psoriasis: impact and clinical correlations. BMC Nutr 8(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ezquerra GM, Regaña MS, Millet PU (2007) Combination of acitretin and oral calcitriol for treatment of plaque-type psoriasis. Acta Derm Venereol 87(5):449–450

    Article  PubMed  Google Scholar 

  63. Arora S, Das P, Arora G (2021) Systematic review and recommendations to combine newer therapies with conventional therapy in psoriatic disease. Front Med (Lausanne) 8:696597

    Article  PubMed  Google Scholar 

  64. Murrell DF et al (2020) Diagnosis and management of pemphigus: recommendations of an international panel of experts. J Am Acad Dermatol 82(3):575-585e1

    Article  PubMed  Google Scholar 

  65. Ehrchen JM, Roth J, Barczyk-Kahlert K (2019) More than suppression: glucocorticoid action on monocytes and macrophages. Front Immunol 10:2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makrgeorgou A et al (2018) Probiotics for treating eczema. Cochrane Database Syst Rev 11(11):CD006135

    PubMed  Google Scholar 

  67. Kim W et al (2020) Lactobacillus plantarum-derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. J Extracell Vesicles 9(1):1793514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim MH et al (2018) Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by staphylococcus aureus-derived extracellular vesicles. Allergy Asthma Immunol Res 10(5):516–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hammell DC et al (2016) Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain 20(6):936–948

    Article  CAS  PubMed  Google Scholar 

  70. Sheriff T et al (2020) The potential role of cannabinoids in dermatology. J Dermatol Treat 31(8):839–845

    Article  CAS  Google Scholar 

  71. Baswan SM et al (2020) Therapeutic potential of cannabidiol (CBD) for skin health and disorders Clinical. Cosmet Investig Dermatol 13:927–942

    Article  CAS  Google Scholar 

  72. Eagleston LRM et al (2018) Cannabinoids in dermatology: a scoping review. Dermatol Online J. https://doi.org/10.5070/D3246040706

    Article  PubMed  Google Scholar 

  73. Martinelli G et al (2022) Cannabis sativa and skin health: dissecting the role of phytocannabinoids. Planta Med 88(7):492–506

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Sadaksharam J, Mahalingam S (2017) Evaluation of oral pentoxifylline in the management of oral Submucous fibrosis - an Ultrasonographic Study. Contemp Clin Dent 8(2):200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen F et al (2014) Molecular analysis of curcumin-induced polarization of murine RAW264.7 macrophages. J Cardiovasc Pharmacol 63(6):544–552

    Article  CAS  PubMed  Google Scholar 

  76. Vollono L et al (2019) Potential of curcumin in skin disorders. Nutrients. https://doi.org/10.3390/nu11092169

    Article  PubMed  PubMed Central  Google Scholar 

  77. Panahi Y et al (2019) Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol 234(2):1165–1178

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  78. Maul JT et al (2021) Topical treatment of Psoriasis Vulgaris: the swiss treatment pathway. Dermatology 237(2):166–178

    Article  CAS  PubMed  Google Scholar 

  79. Yunna C et al (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AE and ZR; writing—original draft preparation, AE, MMT, NT; writing—review and editing, MMT and ZR; supervision, ZR. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Marcarious M. Tantuoyir or Rui Zheng.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apeku, E., Tantuoyir, M.M., Zheng, R. et al. Exploring the polarization of M1 and M2 macrophages in the context of skin diseases. Mol Biol Rep 51, 269 (2024). https://doi.org/10.1007/s11033-023-09014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09014-y

Keywords

Navigation