Skip to main content

Advertisement

Log in

MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits.

Methods and results

In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit β5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells.

Conclusions

In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be accessed with a reasonable request to the corresponding author.

References

  1. Topkas E, Cai N, Cumming A et al (2016) Auranofin is a potent suppressor of osteosarcoma metastasis. Oncotarget 7:831–844

    Article  PubMed  Google Scholar 

  2. Foster L, Dall GF, Reid R et al (2007) Twentieth-century survival from osteosarcoma in childhood. Trends from 1933 to 2004. J Bone Joint Surg Br 89:1234–1238

    Article  CAS  PubMed  Google Scholar 

  3. Bacci G, Ferrari S, Lari S et al (2002) Osteosarcoma of the limb. Amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br 84:88–92

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Song M, Wang Y et al (2022) The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc Natl Acad Sci U S A 119:e2106902119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suh KS, Tanaka T, Sarojini S et al (2013) The role of the ubiquitin proteasome system in lymphoma. Crit Rev Oncol Hematol 87:306–322

    Article  PubMed  Google Scholar 

  6. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, Mi J, Liu S et al (2022) PSMB5 overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma. FEBS Open Bio 12:2025–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jung S-H, Park S-S, Lim J-Y et al (2022) Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness. Exp Mol Med 54:1967–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kao C, Chao A, Tsai C-L et al (2014) Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis 5:e1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen M, Juengpanich S, Li S et al (2022) Bortezomib-encapsulated dual responsive copolymeric nanoparticles for gallbladder cancer targeted therapy. Adv Sci 9:e2103895

    Article  Google Scholar 

  11. Shapovalov Y, Benavidez D, Zuch D, Eliseev RA (2010) Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma. Int J Cancer 127:67–76

    Article  CAS  PubMed  Google Scholar 

  12. Lou Z, Ren T, Peng X et al (2013) Bortezomib induces apoptosis and autophagy in osteosarcoma cells through mitogen-activated protein kinase pathway in vitro. J Int Med Res 41:1505–1519

    Article  CAS  PubMed  Google Scholar 

  13. Hainsworth JD, Meluch AA, Spigel DR et al (2007) Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a minnie pearl cancer research network phase II trial. Clin Genitourin Cancer 5:278–283

    Article  CAS  PubMed  Google Scholar 

  14. Irvin WJ, Orlowski RZ, Chiu W-K et al (2010) Phase II study of bortezomib and pegylated liposomal doxorubicin in the treatment of metastatic breast cancer. Clin Breast Cancer 10:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allmeroth K, Horn M, Kroef V et al (2021) Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia 35:887–892. https://doi.org/10.1038/s41375-020-0989-4

    Article  CAS  PubMed  Google Scholar 

  16. Szemraj J, Robak T (2021) The prognostic value of whole-blood PSMB5, CXCR4, POMP, and RPL5 mRNA expression in patients with multiple myeloma treated with bortezomib. Cancers 13:951

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Fu Y, Zheng Y et al (2020) Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142–3p/PSMB5 axis. Phytomedicine 78:153312. https://doi.org/10.1016/j.phymed.2020.153312

    Article  CAS  PubMed  Google Scholar 

  18. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schickel R, Boyerinas B, Park S-M, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974

    Article  CAS  PubMed  Google Scholar 

  20. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  21. Fang Z, He L, Jia H et al (2017) The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer. Iran J Basic Med Sci 20:187–192

    PubMed  PubMed Central  Google Scholar 

  22. Chen L, Guan H, Gu C et al (2016) miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumour Biol 37:2497–2507

    Article  CAS  PubMed  Google Scholar 

  23. Azarbarzin S, Feizi MAH, Safaralizadeh R et al (2017) The value of MiR-383, an intronic MiRNA, as a diagnostic and prognostic biomarker in intestinal-type gastric cancer. Biochem Genet 55:244–252

    Article  CAS  PubMed  Google Scholar 

  24. Han RL, Wang FP, Zhang PA et al (2017) miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma 64:244–252

    Article  CAS  PubMed  Google Scholar 

  25. Bucay N, Sekhon K, Yang T et al (2017) MicroRNA-383 located in frequently deleted chromosomal locus 8p22 regulates CD44 in prostate cancer. Oncogene 36:2667–2679

    Article  CAS  PubMed  Google Scholar 

  26. Yi Q, Xie W, Sun W et al (2022) A concise review of MicroRNA-383: exploring the insights of its function in tumorigenesis. J Cancer 13:313–324. https://doi.org/10.7150/jca.64846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jafarzadeh A, Noori M, Sarrafzadeh S et al (2022) MicroRNA-383: a tumor suppressor miRNA in human cancer. Front Cell Dev Biol 10:1–20. https://doi.org/10.3389/fcell.2022.955486

    Article  Google Scholar 

  28. Xian M, Cao H, Cao J et al (2017) Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2α/ATF4/CHOP axis. Int J Cancer 141:1029–1041

    Article  CAS  PubMed  Google Scholar 

  29. Lan Y, Xiao X, He Z et al (2018) Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res 46:5809–5821. https://doi.org/10.1093/nar/gky214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilmott JS, Zhang XD, Hersey P, Scolyer RA (2011) The emerging important role of microRNAs in the pathogenesis, diagnosis and treatment of human cancers. Pathology 43:657–671

    Article  CAS  PubMed  Google Scholar 

  31. Barbier J, Chen X, Sanchez G et al (2018) An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell Res 28:556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma H, Liu B, Wang S, Liu J (2016) MicroRNA-383 is a tumor suppressor in human lung cancer by targeting endothelial PAS domain-containing protein 1. Cell Biochem Funct 34:613–619

    Article  CAS  PubMed  Google Scholar 

  33. Xu Z, Zeng X, Tian D et al (2014) MicroRNA-383 inhibits anchorage-independent growth and induces cell cycle arrest of glioma cells by targeting CCND1. Biochem Biophys Res Commun 453:833–838

    Article  CAS  PubMed  Google Scholar 

  34. Zhao L-N, Wang P, Liu Y-H et al (2017) MiR-383 inhibits proliferation, migration and angiogenesis of glioma-exposed endothelial cells in vitro via VEGF-mediated FAK and Src signaling pathways. Cell Signal 30:142–153

    Article  CAS  PubMed  Google Scholar 

  35. Lv Q, Xia Q, Li J, Wang Z (2020) Allicin suppresses growth and metastasis of gastric carcinoma: the key role of microRNA-383-5p-mediated inhibition of ERBB4 signaling. Biosci Biotechnol Biochem 84:1997–2004. https://doi.org/10.1080/09168451.2020.1780903

    Article  CAS  PubMed  Google Scholar 

  36. Liao XH, Zheng L, He HP et al (2015) STAT3 regulated ATR via microRNA-383 to control DNA damage to affect apoptosis in A431 cells. Cell Signal 27:2285–2295. https://doi.org/10.1016/j.cellsig.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  38. Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606

    Article  CAS  PubMed  Google Scholar 

  39. Dalla Via L, Nardon C, Fregona D (2012) Targeting the ubiquitin-proteasome pathway with inorganic compounds to fight cancer: a challenge for the future. Future Med Chem 4:525–543

    Article  CAS  PubMed  Google Scholar 

  40. Northrop A, Vangala JR, Feygin A, Radhakrishnan SK (2020) Disabling the protease DDI2 attenuates the transcriptional activity of NRF1 and potentiates proteasome inhibitor cytotoxicity. Int J Mol Sci 21:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh S, Gomez HJ, Thakkar S et al (2023) Overcoming acquired drug resistance to cancer therapies through targeted STAT3 inhibition. Int J Mol Sci 24:4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang YM, Lee S, Nam CW et al (2010) G(alpha)12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation. Carcinogenesis 31:1230–1237

    Article  CAS  PubMed  Google Scholar 

  43. Fan J, Du W, Zhang H et al (2020) Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 594:466–476. https://doi.org/10.1002/1873-3468.13624

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the key research and development plan of Shaanxi Province (2023-YBSF-290).

Author information

Authors and Affiliations

Authors

Contributions

HW wrote the main manuscript text; CB gave funding support; XD provided the technical support; HW concept of the ideal and supervised the whole study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Haoyu Wang.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethical approval

Not applicable (No animal and human are involved in this study).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Supplementary file2 (DOCX 341 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Bai, C., Dang, X. et al. MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5. Mol Biol Rep 51, 170 (2024). https://doi.org/10.1007/s11033-023-08964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08964-7

Keywords

Navigation