Skip to main content
Log in

Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction.

Aim

In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder.

Method and results

In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction.

Conclusion

Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided on request.

Abbreviations

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CAT:

Catalase

FFA:

Free fatty acids

GLUT:

Glucose transporter

HFD:

High fat diet

HIF:

Hypoxia inducible factor

i.p:

Intraperitoneal

IL:

Interleukins

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

OXPHOS:

Oxidative phosphorylation

NBT:

Nitro blue tetrazolium

NAD:

Nicotinamide adenine dinucleotide

ROS:

Reactive oxygen species

SD:

Standard deviation

SDH:

Succinate dehydrogenase

SOD:

Superoxide dismutase

STZ:

Streptozotocin

TNF:

Tumour necrosis factor

WAT:

White adipose tissue

References

  1. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. https://doi.org/10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  2. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119. https://doi.org/10.1172/JCI25102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gregor MF, Hotamisligil GS (2007) Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48(9):1905–1914. https://doi.org/10.1194/jlr.R700007-JLR200

    Article  CAS  PubMed  Google Scholar 

  4. Houstis N et al (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  PubMed  Google Scholar 

  5. Ozcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461. https://doi.org/10.1126/science.1103160

    Article  CAS  PubMed  Google Scholar 

  6. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92(3):347–355

    Article  CAS  PubMed  Google Scholar 

  7. Gambino R et al (2011) Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxid Redox Signal 15(5):1325–1365. https://doi.org/10.1089/ars.2009.3058

    Article  CAS  PubMed  Google Scholar 

  8. Rector RS et al (2010) Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 52(5):727–736. https://doi.org/10.1016/j.jhep.2009.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89(1):3–9. https://doi.org/10.1079/BJN2002763

    Article  CAS  PubMed  Google Scholar 

  10. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21(12):1443–1455. https://doi.org/10.1101/gad.1550907

    Article  CAS  PubMed  Google Scholar 

  12. Bhatnagar S et al (1972) Constituents of Madhuca longifolia leaves. Phytochemistry 11(1):465–467

    Article  CAS  Google Scholar 

  13. Day CP (2006) From fat to inflammation. Gastroenterology 130(1):207–210

    Article  CAS  PubMed  Google Scholar 

  14. Milan G et al (2002) Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res 10(11):1095–1103. https://doi.org/10.1038/oby.2002.149

    Article  CAS  PubMed  Google Scholar 

  15. Silswal N et al (2005) Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 334(4):1092–1101. https://doi.org/10.1016/j.bbrc.2005.06.202

    Article  CAS  PubMed  Google Scholar 

  16. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93(1):1–21. https://doi.org/10.1152/physrev.00017.2012

    Article  CAS  PubMed  Google Scholar 

  17. Dubey N et al (2004) Global promotion of herbal medicine: India’s opportunity. Curr Sci 86(1):37–41

    Google Scholar 

  18. Grover JK et al (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81(1):81–100

    Article  CAS  PubMed  Google Scholar 

  19. Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol 93(1):123–132. https://doi.org/10.1016/j.jep.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal S, Paridhavi M (2007) Herbal drug technology. Universities Press Private Limited, Hyderabad

    Google Scholar 

  21. Akshatha K et al (2013) Ethnomedical uses of madhuca longifolia–a review. Int J Life Sci Pharm Res 3(1):44

    Google Scholar 

  22. Panghal M et al (2010) Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. J Ethnobiol Ethnomed 6(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sunita M, Sarojini P (2013) Madhuca lonigfolia (Sapotaceae): a review of its traditional uses and nutritional properties. Int J Human Soc Sci Invent 2(5):30–36

    Google Scholar 

  24. Jha D, Mazumder PM (2018) Biological, chemical and pharmacological aspects of Madhuca longifolia. Asian Pac J Trop Med 11(1):9

    Article  CAS  Google Scholar 

  25. Khare C (2004) Encyclopedia of Indian medicinal plants: rational western therapy, ayurvedic and other traditional usage. Springer, Berlin

    Google Scholar 

  26. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):1–8

    Article  Google Scholar 

  27. Piché M-E et al (2020) Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 126(11):1477–1500

    Article  PubMed  Google Scholar 

  28. Wang S et al (2022) Natural polyphenols: a potential prevention and treatment strategy for metabolic syndrome. Food Funct 13(19):9734–9753

    Article  CAS  PubMed  Google Scholar 

  29. Arulmozhi DK et al (2008) Metabolic effects of various antidiabetic and hypolipidaemic agents on a high-fat diet and multiple low-dose streptozocin (MLDS) mouse model of diabetes. J Pharm Pharmacol 60(9):1167–1173

    Article  CAS  PubMed  Google Scholar 

  30. Bansal P et al (2012) Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol 64(6):651–658. https://doi.org/10.1016/j.etp.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Current Protocols 1(4):e78

    Article  CAS  PubMed  Google Scholar 

  32. Pedersen PL et al (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol 20:411–481

    Article  CAS  PubMed  Google Scholar 

  33. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  34. Prajapati SK et al (2017) Coenzyme Q10 prevents mitochondrial dysfunction and facilitates pharmacological activity of atorvastatin in 6-OHDA induced dopaminergic toxicity in rats. Neurotox Res 31:478–492

    Article  PubMed  Google Scholar 

  35. Old SL, Johnson MA (1989) Methods of microphotometric assay of succinate-dehydrogenase and cytochrome-C oxidase activities for use on human skeletal-muscle. Histochem J 21(9–10):545–555

    Article  CAS  PubMed  Google Scholar 

  36. Bhattacharjee A et al (2021) Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 908:174361

    Article  CAS  PubMed  Google Scholar 

  37. Storrie B, Madden EA (1990) Isolation of subcellular organelles. Methods Enzymol 182:203–225

    Article  CAS  PubMed  Google Scholar 

  38. Griffiths DE, Houghton RL (1974) Studies on energy-linked reactions: modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 46(1):157–167

    Article  CAS  PubMed  Google Scholar 

  39. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J biol Chem 66(2):375–400

    Article  CAS  Google Scholar 

  40. Faddah L et al (2007) Lactate dehydrogenase isoenzyme pattern in the liver tissue of chemically-injured rats treated by combinations of diphenyl dimethyl bicarboxylate. J Appl Biomed (De Gruyter Open) 5(2):77

    Article  CAS  Google Scholar 

  41. Wróblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90(1):210–213

    Article  PubMed  Google Scholar 

  42. Prajapati SK, Krishnamurthy S (2021) Development and treatment of cognitive inflexibility in sub-chronic stress–re-stress (SRS) model of PTSD. Pharmacol Rep 73:464–479

    Article  CAS  PubMed  Google Scholar 

  43. Prajapati SK, Krishnamurthy S (2021) Non-selective orexin-receptor antagonist attenuates stress-re-stress-induced core PTSD-like symptoms in rats: Behavioural and neurochemical analyses. Behav Brain Res 399:113015

    Article  CAS  PubMed  Google Scholar 

  44. Saha S (2003) Some triterpenic saponins, sapogenins and phytoalkanoates as azadirachtin adjuvants, Indian Agricultural Research Institute; New Delhi

  45. Altemimi A et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). https://doi.org/10.3390/plants6040042

    Article  PubMed  Google Scholar 

  46. Eskander J et al (2005) Saponins from the leaves of Mimusops laurifolia. J Nat Prod 68(6):832–841. https://doi.org/10.1021/np049582e

    Article  CAS  PubMed  Google Scholar 

  47. Anand David AV et al (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84–89. https://doi.org/10.4103/0973-7847.194044

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen S et al (2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. https://doi.org/10.1155/2016/9340637

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kawser Hossain M et al (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17(4):569. https://doi.org/10.3390/ijms17040569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y, Ding Y (2012) Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci Human Wellness 1(1):19–25

    Article  Google Scholar 

  51. Chen CY et al (2012) 10-Shogaol, an antioxidant from Zingiber officinale for skin cell proliferation and migration enhancer. Int J Mol Sci 13(2):1762–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mashhadi NS et al (2013) Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med 4(Suppl 1):S36

    PubMed  PubMed Central  Google Scholar 

  53. Sami W et al (2017) Effect of diet on type 2 diabetes mellitus: a review. Int J Health Sci 11(2):65

    Google Scholar 

  54. Cui M, Kim HY, Lee KH, Jeong JK, Hwang JH, Yeo KY, et al (2015) Antiobesity effects of kimchi in diet-induced obese mice. J Ethnic Foods 2(3):137–144

  55. Antony PJ, Gandhi GR, Stalin A, Balakrishna K, Toppo E, Sivasankaran K, Ignacimuthu S, Al-Dhabi NA (2017) Myoinositol ameliorates high-fat diet and streptozotocin-induced diabetes in rats through promoting insulin receptor signaling. Biomed Pharmacother 88:1098–1113. https://doi.org/10.1016/j.biopha.2017.01.170

  56. Echeverria F et al (2018) Attenuation of high-fat diet-induced rat liver oxidative stress and steatosis by combined hydroxytyrosol- (HT-) eicosapentaenoic acid supplementation mainly relies on HT. Oxid Med Cell Longev. https://doi.org/10.1155/2018/5109503

    Article  PubMed  PubMed Central  Google Scholar 

  57. Milagro FI et al (2006) Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity 14(7):1118–1123

    Article  CAS  PubMed  Google Scholar 

  58. Guo R et al (2017) Adiponectin deficiency rescues high-fat diet-induced hepatic injury, apoptosis and autophagy loss despite persistent steatosis. Int J Obes (Lond) 41(9):1403–1412. https://doi.org/10.1038/ijo.2017.128

    Article  CAS  PubMed  Google Scholar 

  59. Kuppusamy P et al (2015) Evaluation of antihypercholesterolemic effect using Memecylon edule Roxb. ethanolic extract in cholesterol-induced Swiss albino mice. JACME 5(4):85–91

    Google Scholar 

  60. Sikder K et al (2014) Quercetin and β-sitosterol prevent high fat diet induced dyslipidemia and hepatotoxicity in Swiss albino mice

  61. Roy SP et al (2015) Screening of hepatoprotective activity of Madhuca longifolia bark on D-Galactosamine induced hepatotoxicity in rats. Biomed Res 26(2):365–369

    Google Scholar 

  62. Simona JP et al Pre-treatment effects against the diclofenac-induced toxicity by the aqueous leaf extract of Madhuca longifolia on female Wistar albino rats for 10 and 15 days

  63. Ragheb R, Medhat AM (2011) Mechanisms of fatty acid-induced insulin resistance in muscle and liver. J Diabetes Metab 2(127):1–6

    Google Scholar 

  64. Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480. https://doi.org/10.4239/wjd.v6.i3.456

    Article  PubMed  PubMed Central  Google Scholar 

  65. Park Y (2014) Oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress. Bio Design 1:1–20

    Google Scholar 

  66. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671. https://doi.org/10.1056/NEJMoa031314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Day CP, James OFW (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4):842–845

    Article  CAS  PubMed  Google Scholar 

  68. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140-1142. https://doi.org/10.1126/science.1082889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Solaini G et al (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797(6–7):1171–1177. https://doi.org/10.1016/j.bbabio.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  70. Vial G et al (2011) Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 54(2):348–356. https://doi.org/10.1016/j.jhep.2010.06.044

    Article  CAS  PubMed  Google Scholar 

  71. Yudkin JS (2003) Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obes Relat Metab Disord 27(Suppl 3):S25-28. https://doi.org/10.1038/sj.ijo.0802496

    Article  CAS  PubMed  Google Scholar 

  72. Romero-Garcia S et al (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52. https://doi.org/10.3389/fimmu.2016.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wagner W et al (2016) Lactate stimulates IL-4 and IL-13 production in activated HuT-78 T lymphocytes through a process that involves monocarboxylate transporters and protein hyperacetylation. J Interferon Cytokine Res 36(5):317–327

    Article  CAS  PubMed  Google Scholar 

  74. Yasuda S et al (2004) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor-1α and its significance. J Hepatol 40(1):117–123

    Article  CAS  PubMed  Google Scholar 

  75. Deal RA et al (2018) Understanding intestinal glucose transporter expression in obese compared to non-obese subjects. Surg Endosc 32(4):1755–1761. https://doi.org/10.1007/s00464-017-5858-5

    Article  PubMed  Google Scholar 

  76. Jung CY (1996) The facilitative glucose transporter and insulin action. Exp Mol Med 28(4):153

    Article  CAS  Google Scholar 

  77. Navale AM, Paranjape AN (2016) Glucose transporters: physiological and pathological roles. Biophys Rev 8(1):5–9. https://doi.org/10.1007/s12551-015-0186-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wood IS et al (2007) Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem Biophys Res Commun 361(2):468–473. https://doi.org/10.1016/j.bbrc.2007.07.032

    Article  CAS  PubMed  Google Scholar 

  79. Hansen PA et al (1998) A high fat diet impairs stimulation of glucose transport in muscle. Functional evaluation of potential mechanisms. J Biol Chem 273(40):26157–26163

    Article  CAS  PubMed  Google Scholar 

  80. Karim S et al (2014) Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake. Am J Physiol Gastrointest Liver Physiol 307(12):G1180-1190. https://doi.org/10.1152/ajpgi.00377.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang JZ et al (1999) Regulation of glucose transport by hypoxia. Am J Kidney Dis 34(1):189–202. https://doi.org/10.1053/AJKD03400189

    Article  CAS  PubMed  Google Scholar 

  82. Hu XJ et al (2000) The abnormality of glucose transporter in the erythrocyte membrane of Chinese type 2 diabetic patients. Biochim Biophys Acta 1466(1–2):306–314

    Article  CAS  PubMed  Google Scholar 

  83. Karim S et al (2012) Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol 18(46):6771–6781. https://doi.org/10.3748/wjg.v18.i46.6771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schürmann A (2008) Glucose transporters: their abnormalities and significance in type 2 diabetes and cancer. Diabetes Cancer 19:71–83

    Google Scholar 

  85. Stringer DM et al (2015) Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev 73(3):140–154. https://doi.org/10.1093/nutrit/nuu012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ms Parul Gupta. Authors also acknowledge the Department of Pharmaceutical Sciences and Technology, BIT mesra and SAIF CDRI Lucknow for providing the facilities. Authors are grateful to UGC for providing financial assistance.

Funding

This work is not funded by any funded agency.

Author information

Authors and Affiliations

Authors

Contributions

DJ and SKP designed the study and written the manuscript. DJ, SKP, PD and MJ performed the experiment. DJ, SKP and PMM analyzed results, checked, and finalized the manuscript. The authors state that all data were generated internally and that no paper mill was used.

Corresponding author

Correspondence to Dhruv Jha.

Ethics declarations

Conflict of interest

Authors declares no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the National Institutes of Health Guidelines (publication number 85-23, revised 2013). Experiments on animals were approved by the Institutional Animal Ethical Committee, (approval no. 1972/PH/BIT/18/17/IEAC).

Consent to participate

Not applicable.

Consent for publication

All the authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, D., Prajapati, S.K., Deb, P.K. et al. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 51, 209 (2024). https://doi.org/10.1007/s11033-023-08962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08962-9

Keywords

Navigation