Skip to main content

Advertisement

Log in

The APE1/REF-1 and the hallmarks of cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain’s role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data and materials generated or used during the study are available from the corresponding author by request.

References

  1. Whitaker AM, Freudenthal BD (2018) APE1: a skilled nucleic acid surgeon. DNA Repair (Amst) 71:93–100. https://doi.org/10.1016/j.dnarep.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  2. Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36:425–435. https://doi.org/10.1016/j.ctrv.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Choi S, Joo HK, Jeon BH (2016) Dynamic regulation of APE1/Ref-1 as a therapeutic target protein. Chonnam Med J 52:75. https://doi.org/10.4068/cmj.2016.52.2.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Zhang Z, Zhang L, Zhong Z (2020) Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 38:195–203. https://doi.org/10.1002/cbf.3461

    Article  CAS  PubMed  Google Scholar 

  5. Bazzani V, Barchiesi A, Radecka D et al (2020) Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA repair contributing to cell proliferation and mitochondrial integrity in early stages of hepatocellular carcinoma. BMC Cancer 20:969. https://doi.org/10.1186/s12885-020-07258-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mijit M, Caston R, Gampala S et al (2021) APE1/Ref-1 - one target with multiple indications: emerging aspects and new directions. J Cell Signal 2:151–161

    PubMed  PubMed Central  Google Scholar 

  7. Cardoso AA, Jiang Y, Luo M et al (2012) APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1–STAT3 dual-targeting effectively inhibits Pancreatic Cancer Cell Survival. PLoS ONE 7:e47462. https://doi.org/10.1371/journal.pone.0047462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Logsdon DP, Shah F, Carta F et al (2018) Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects Pancreatic cancer cell survival. Sci Rep 8:13759. https://doi.org/10.1038/s41598-018-32034-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caston RA, Gampala S, Armstrong L et al (2021) The multifunctional APE1 DNA repair–redox signaling protein as a drug target in human Disease. Drug Discov Today 26:218–228. https://doi.org/10.1016/j.drudis.2020.10.015

    Article  CAS  PubMed  Google Scholar 

  10. Mangiapane G, Pascut D, Dalla E et al (2023) Clinical significance of Apurinic/Apyrimidinic Endodeoxyribonuclease 1 and MicroRNA Axis in Hepatocellular Carcinoma. J Clin Transl Hepatol 000:000–000. https://doi.org/10.14218/JCTH.2022.00179

    Article  Google Scholar 

  11. Antoniali G, Dalla E, Mangiapane G et al (2022) APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b. Cell Mol Life Sci 79:446. https://doi.org/10.1007/s00018-022-04443-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roychoudhury S, Pramanik S, Harris HL et al (2020) Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proceedings of the National Academy of Sciences 117:11409–11420. https://doi.org/10.1073/pnas.1912355117

  13. Ayyildiz D, Antoniali G, D’Ambrosio C et al (2020) Architecture of the human Ape1 Interactome defines novel cancers signatures. Sci Rep 10:28. https://doi.org/10.1038/s41598-019-56981-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antoniali G, Serra F, Lirussi L et al (2017) Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat Commun 8:797. https://doi.org/10.1038/s41467-017-00842-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Desai RV, Chen X, Martin B et al (2021) A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science (1979) 373:. https://doi.org/10.1126/science.abc6506

  16. Fleming AM, Ding Y, Burrows CJ (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proceedings of the National Academy of Sciences 114:2604–2609. https://doi.org/10.1073/pnas.1619809114

  17. Codrich M, Comelli M, Malfatti MC et al (2019) Inhibition of APE1-endonuclease activity affects cell metabolism in colon Cancer cells via a p53-dependent pathway. DNA Repair (Amst) 82:102675. https://doi.org/10.1016/j.dnarep.2019.102675

    Article  CAS  PubMed  Google Scholar 

  18. Guerreiro PS, Corvacho E, Costa JG et al (2017) The APE1 redox inhibitor E3330 reduces collective cell migration of human Breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 90:561–571. https://doi.org/10.1111/cbdd.12979

    Article  CAS  PubMed  Google Scholar 

  19. McIlwain DW, Fishel ML, Boos A et al (2018) APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in Prostate cancer cells. Oncotarget 9:10962–10977. https://doi.org/10.18632/oncotarget.23493

    Article  PubMed  Google Scholar 

  20. Wen X, Lu R, Xie S et al (2016) APE1 overexpression promotes the progression of Ovarian cancer and serves as a potential therapeutic target. Cancer Biomarkers 17:313–322. https://doi.org/10.3233/CBM-160643

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Xiang D-B, Yang X et al (2009) APE1 overexpression is associated with cisplatin resistance in non-small cell Lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells. Lung Cancer 66:298–304. https://doi.org/10.1016/j.lungcan.2009.02.019

    Article  PubMed  Google Scholar 

  22. Woo J, Park H, Sung SH et al (2014) Prognostic Value of Human Apurinic/Apyrimidinic Endonuclease 1 (APE1) expression in Breast Cancer. PLoS ONE 9:e99528. https://doi.org/10.1371/journal.pone.0099528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang Y, Zhou S, Sandusky GE et al (2010) Reduced expression of DNA repair and Redox signaling protein APE1/Ref-1 impairs human Pancreatic Cancer cell survival, proliferation, and cell cycle progression. Cancer Invest 28:885–895. https://doi.org/10.3109/07357907.2010.512816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sengupta S, Mantha AK, Song H et al (2016) Elevated level of acetylation of APE1 in Tumor cells modulates DNA damage repair. Oncotarget 7:75197–75209. https://doi.org/10.18632/oncotarget.12113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Zhang Q, Li L et al (2020) Arginine methylation of APE1 promotes its mitochondrial translocation to protect cells from oxidative damage. Free Radic Biol Med 158:60–73. https://doi.org/10.1016/j.freeradbiomed.2020.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu H-H, Chu Y-C, Wang L et al (2013) Cytoplasmic Ape1 expression elevated by p53 aberration may predict Survival and Relapse in Resected Non-small Cell Lung Cancer. Ann Surg Oncol 20:336–347. https://doi.org/10.1245/s10434-012-2431-2

    Article  Google Scholar 

  27. Tabanifar B, Moorthy A, Tsai HH et al (2023) JNK mediates cell death by promoting the ubiquitination of the apurinic/apyrimidinic endonuclease APE1. Cell Rep 42:113123. https://doi.org/10.1016/j.celrep.2023.113123

    Article  CAS  PubMed  Google Scholar 

  28. YANG Z, YANG S, MISNER BJ et al (2014) The role of APE/Ref-1 signaling pathway in hepatocellular carcinoma progression. Int J Oncol 45:1820–1828. https://doi.org/10.3892/ijo.2014.2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou G-M, Maitra A (2008) Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits Pancreatic cancer cell growth and migration. Mol Cancer Ther 7:2012–2021. https://doi.org/10.1158/1535-7163.MCT-08-0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fishel ML, He Y, Reed AM et al (2008) Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks Ovarian cancer cell and Tumor growth. DNA Repair (Amst) 7:177–186. https://doi.org/10.1016/j.dnarep.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  31. Vascotto C, Bisetto E, Li M et al (2011) Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 22:3887–3901. https://doi.org/10.1091/mbc.e11-05-0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fishel ML, Jiang Y, Rajeshkumar NV et al (2011) Impact of APE1/Ref-1 Redox Inhibition on pancreatic Tumor growth. Mol Cancer Ther 10:1698–1708. https://doi.org/10.1158/1535-7163.MCT-11-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong Q, Wang W, Luo L, Sun X (2017) Silencing of Apurinic/Apyrimidinic Endonuclease 1 inhibits the Growth and Migration in Ovarian Cancer Cell via activator-Protein-1 signaling. Gynecol Obstet Invest 82:188–199. https://doi.org/10.1159/000447261

    Article  CAS  PubMed  Google Scholar 

  34. Fishel ML, Xia H, McGeown J et al (2019) Antitumor Activity and mechanistic characterization of APE1/Ref-1 inhibitors in Bladder Cancer. Mol Cancer Ther 18:1947–1960. https://doi.org/10.1158/1535-7163.MCT-18-1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding J, Fishel ML, Reed AM et al (2017) Ref-1/APE1 as a Transcriptional Regulator and Novel Therapeutic Target in Pediatric T-cell Leukemia. Mol Cancer Ther 16:1401–1411. https://doi.org/10.1158/1535-7163.MCT-17-0099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thakur S, Sarkar B, Cholia RP et al (2014) APE1/Ref-1 as an emerging therapeutic target for various human Diseases: phytochemical modulation of its functions. Exp Mol Med 46:e106–e106. https://doi.org/10.1038/emm.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zaky A, Busso C, Izumi T et al (2008) Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the Tumor suppressor p53 in response to DNA damage. Nucleic Acids Res 36:1555–1566. https://doi.org/10.1093/nar/gkm1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. CUN Y, DAI N, LI M et al (2014) APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner. Oncol Rep 31:901–909. https://doi.org/10.3892/or.2013.2892

    Article  CAS  PubMed  Google Scholar 

  39. Sriramajayam K, Peng D, Lu H et al (2021) Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett’s related esophageal adenocarcinoma cells. Redox Biol 43:101970. https://doi.org/10.1016/j.redox.2021.101970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manoel-Caetano FS, Rossi AFT, Ribeiro ML et al (2020) Hydrogen peroxide and Helicobacter pylori extract treatment combined with APE1 knockdown induce DNA damage, G2/M arrest and cell death in gastric cancer cell line. DNA Repair (Amst) 96:102976. https://doi.org/10.1016/j.dnarep.2020.102976

    Article  CAS  PubMed  Google Scholar 

  41. Long K, Gu L, Li L et al (2021) Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell Lung cancer. Cell Death Dis 12:503. https://doi.org/10.1038/s41419-021-03804-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Zhang Z, Li Q et al (2020) Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma. Oncol Rep 44:499–508. https://doi.org/10.3892/or.2020.7633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Filippi-Chiela EC, Silva MMB e, Thomé MP, Lenz G (2015) Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 11:1099–1113. https://doi.org/10.1080/15548627.2015.1009795

  44. Wyld L, Bellantuono I, Tchkonia T et al (2020) Senescence and Cancer: a review of clinical implications of Senescence and Senotherapies. Cancers (Basel) 12:2134. https://doi.org/10.3390/cancers12082134

    Article  CAS  PubMed  Google Scholar 

  45. Heo J-Y, Jing K, Song K-S et al (2009) Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells. Stem Cells 27:1455–1462. https://doi.org/10.1002/stem.54

    Article  CAS  PubMed  Google Scholar 

  46. Collado M, Blasco MA, Serrano M (2007) Cellular Senescence in Cancer and Aging. Cell 130:223–233. https://doi.org/10.1016/j.cell.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  47. Davalos AR, Coppe J-P, Campisi J, Desprez P-Y (2010) Senescent cells as a source of inflammatory factors for Tumor progression. Cancer Metastasis Rev 29:273–283. https://doi.org/10.1007/s10555-010-9220-9

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dey A, Chakrabarti K (2018) Current perspectives of Telomerase structure and function in eukaryotes with emerging views on telomerase in human parasites. Int J Mol Sci 19:333. https://doi.org/10.3390/ijms19020333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanahan D, Weinberg RA (2000) The Hallmarks of Cancer. Cell 100:57–70. https://doi.org/10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  50. Madlener S, Ströbel T, Vose S et al (2013) Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance. Proceedings of the National Academy of Sciences 110:17844–17849. https://doi.org/10.1073/pnas.1304784110

  51. Rossiello F, Herbig U, Longhese MP et al (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95. https://doi.org/10.1016/j.gde.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li M, Yang X, Lu X et al (2018) APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res 46:5664–5677. https://doi.org/10.1093/nar/gky326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karimi-Busheri F, Rasouli-Nia A, Mackey JR, Weinfeld M (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12:R31. https://doi.org/10.1186/bcr2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wigerup C, Påhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 164:152–169. https://doi.org/10.1016/j.pharmthera.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  55. Gampala S, Shah F, Lu X et al (2021) Ref-1 redox activity alters cancer cell metabolism in Pancreatic cancer: exploiting this novel finding as a potential target. J Experimental Clin Cancer Res 40:251. https://doi.org/10.1186/s13046-021-02046-x

    Article  CAS  Google Scholar 

  56. Fishel ML, Wu X, Devlin CM et al (2015) Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem 290:3057–3068. https://doi.org/10.1074/jbc.M114.621995

    Article  CAS  PubMed  Google Scholar 

  57. Yang Z-Z, Li M-X, Zhang Y-S et al (2010) Knock down of the dual functional protein apurinic/apyrimidinic endonuclease 1 enhances the killing effect of hematoporphrphyrin derivative-mediated photodynamic therapy on non-small cell Lung cancer cells in vitro and in a xenograft model. Cancer Sci 101:180–187. https://doi.org/10.1111/j.1349-7006.2009.01366.x

    Article  CAS  PubMed  Google Scholar 

  58. Pinzón-Daza ML, Cuellar-Saenz Y, Nualart F et al (2017) Oxidative stress promotes Doxorubicin-Induced Pgp and BCRP expression in Colon Cancer cells under hypoxic conditions. J Cell Biochem 118:1868–1878. https://doi.org/10.1002/jcb.25890

    Article  CAS  PubMed  Google Scholar 

  59. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713. https://doi.org/10.1038/nrc2468

    Article  CAS  PubMed  Google Scholar 

  60. Pires BRB, Mencalha AL, Ferreira GM et al (2014) The Hypoxia-Inducible Factor-1α signaling pathway and its relation to Cancer and Immunology. Am J Immunol 10:215–224. https://doi.org/10.3844/ajisp.2014.215.224

    Article  CAS  Google Scholar 

  61. Semenza GL (2011) Regulation of metabolism by Hypoxia-Inducible factor 1. Cold Spring Harb Symp Quant Biol 76:347–353. https://doi.org/10.1101/sqb.2011.76.010678

    Article  CAS  PubMed  Google Scholar 

  62. Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794. https://doi.org/10.1111/j.1582-4934.2009.00994.x

    Article  CAS  PubMed  Google Scholar 

  63. Ambrosio MR, Di Serio C, Danza G et al (2016) Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in Prostate cancer. Diagn Pathol 11:45. https://doi.org/10.1186/s13000-016-0495-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Infantino V, Santarsiero A, Convertini P et al (2021) Cancer Cell Metabolism in Hypoxia: role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 22:5703. https://doi.org/10.3390/ijms22115703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between Cancer cells and stromal cells in Colorectal carcinomas: a metabolic survival role for Tumor-Associated Stroma. Cancer Res 66:632–637. https://doi.org/10.1158/0008-5472.CAN-05-3260

    Article  CAS  PubMed  Google Scholar 

  66. Boedtkjer E, Pedersen SF (2020) The acidic Tumor Microenvironment as a driver of Cancer. Annu Rev Physiol 82:103–126. https://doi.org/10.1146/annurev-physiol-021119-034627

    Article  CAS  PubMed  Google Scholar 

  67. Logsdon DP, Grimard M, Luo M et al (2016) Regulation of HIF1α under Hypoxia by APE1/Ref-1 impacts CA9 expression: dual targeting in patient-derived 3D Pancreatic Cancer models. Mol Cancer Ther 15:2722–2732. https://doi.org/10.1158/1535-7163.MCT-16-0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: the Next Generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  69. Wang D, Zhong Z-Y, Li M-X et al (2007) Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci 98:1993–2001. https://doi.org/10.1111/j.1349-7006.2007.00616.x

    Article  CAS  PubMed  Google Scholar 

  70. CHEN Y, YANG Y, YUAN Z et al (2012) Predicting chemosensitivity in osteosarcoma prior to chemotherapy: an investigational study of biomarkers with immunohistochemistry. Oncol Lett 3:1011–1016. https://doi.org/10.3892/ol.2012.604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagoya H, Futagami S, Shimpuku M et al (2014) Apurinic/apyrimidinic endonuclease-1 is associated with angiogenesis and VEGF production via upregulation of COX-2 expression in Esophageal cancer tissues. Am J Physiology-Gastrointestinal Liver Physiol 306:G183–G190. https://doi.org/10.1152/ajpgi.00057.2013

    Article  CAS  Google Scholar 

  72. Ren T, Qing Y, Dai N et al (2014) Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells. Cancer Sci 105:186–194. https://doi.org/10.1111/cas.12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang X, Shan J, Dai N et al (2015) Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma. Cancer Sci 106:1394–1401. https://doi.org/10.1111/cas.12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang W, Wei X, Li Q et al (2017) MicroRNA-765 enhances the anti-angiogenic effect of CDDP via APE1 in Osteosarcoma. J Cancer 8:1542–1551. https://doi.org/10.7150/jca.18680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gu X, Cun Y, Li M et al (2013) Human Apurinic/Apyrimidinic endonuclease siRNA inhibits the Angiogenesis Induced by X-Ray Irradiation in Lung Cancer cells. Int J Med Sci 10:870–882. https://doi.org/10.7150/ijms.5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li M, Dai N, Wang D, Zhong Z (2019) Distinct APE1 activities affect the regulation of VEGF transcription under hypoxic conditions. Comput Struct Biotechnol J 17:324–332. https://doi.org/10.1016/j.csbj.2019.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14:611–629. https://doi.org/10.1038/nrclinonc.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  78. Goossens S, Vandamme N, Van Vlierberghe P, Berx G (2017) EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochimica et Biophysica Acta (BBA) -. Reviews on Cancer 1868:584–591. https://doi.org/10.1016/j.bbcan.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  79. Matysiak M, Kapka-Skrzypczak L, Jodłowska-Jędrych B, Kruszewski M (2017) EMT promoting transcription factors as prognostic markers in human Breast cancer. Arch Gynecol Obstet 295:817–825. https://doi.org/10.1007/s00404-017-4304-1

    Article  PubMed  Google Scholar 

  80. Silva LP, Santana T, Sedassari BT et al (2017) Apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in malignant transformation of salivary gland pleomorphic adenoma. Eur Arch Otorhinolaryngol 274:3203–3209. https://doi.org/10.1007/s00405-017-4605-9

    Article  PubMed  Google Scholar 

  81. Lee JW, Jin J, Rha K, Kim YM (2012) Expression pattern of Apurinic/Apyrimidinic endonuclease in Sinonasal squamous cell carcinoma. Otolaryngology–Head and Neck Surgery 147:788–795. https://doi.org/10.1177/0194599812449987

    Article  PubMed  Google Scholar 

  82. Qing Y, Li Q, Ren T, et al (2015) Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther 901.https://doi.org/10.2147/DDDT.S75152

  83. Li Q, Zhou Z-W, Duan W et al (2021) Inhibiting the redox function of APE1 suppresses Cervical cancer Metastasis via disengagement of ZEB1 from E-cadherin in EMT. J Experimental Clin Cancer Res 40:220. https://doi.org/10.1186/s13046-021-02006-5

    Article  CAS  Google Scholar 

  84. Yang X, Peng Y, Jiang X et al (2018) The regulatory role of APE1 in epithelial-to‐mesenchymal transition and in determining EGFR‐TKI responsiveness in non‐small‐cell Lung cancer. Cancer Med 7:4406–4419. https://doi.org/10.1002/cam4.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei X, Li Q, Li Y et al (2016) Prediction of survival prognosis of non-small cell Lung cancer by APE1 through regulation of epithelial-mesenchymal transition. Oncotarget 7:28523–28539. https://doi.org/10.18632/oncotarget.8660

    Article  PubMed  PubMed Central  Google Scholar 

  86. Oliveira TT, Coutinho LG, de Oliveira LOA et al (2022) APE1/Ref-1 role in inflammation and Immune Response. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.793096

  87. Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D (2011) Apurinic/Apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res 31:379–385

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nassour H, Wang Z, Saad A et al (2016) Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Sci Rep 6:29389. https://doi.org/10.1038/srep29389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Y, Zhao X, Xiao H et al (2021) APE1 may influence CD4 + naïve T cells on recurrence free survival in early stage NSCLC. BMC Cancer 21:233. https://doi.org/10.1186/s12885-021-07950-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang Z, Wang Y, Wan Y et al (2021) Apurinic/apyrimidinic endonuclease 1/reduction-oxidation effector factor-1 (APE1) regulates the expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome through modulating transcription factor NF-κB and promoting the secretion of inflammatory mediators in macrophages. Ann Transl Med 9:145–145. https://doi.org/10.21037/atm-20-7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Abbott M, Ustoyev Y (2019) Cancer and the Immune System: the history and background of Immunotherapy. Semin Oncol Nurs 35:150923. https://doi.org/10.1016/j.soncn.2019.08.002

    Article  PubMed  Google Scholar 

  92. Muenst S, Läubli H, Soysal SD et al (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 279:541–562. https://doi.org/10.1111/joim.12470

    Article  CAS  PubMed  Google Scholar 

  93. Vinay DS, Ryan EP, Pawelec G et al (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  94. Wang L-A, Yang B, Tang T et al (2020) Correlation of APE1 with VEGFA and CD163 + macrophage infiltration in Bladder cancer and their prognostic significance. Oncol Lett 20:2881–2887. https://doi.org/10.3892/ol.2020.11814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Akhter N, Takeda Y, Nara H et al (2016) Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1 (Ape1/Ref-1) modulates Antigen presenting cell-mediated T helper cell type 1 responses. J Biol Chem 291:23672–23680. https://doi.org/10.1074/jbc.M116.742353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frossi B, Antoniali G, Yu K et al (2019) Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination. J Biol Chem 294:5198–5207. https://doi.org/10.1074/jbc.RA118.006601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang J, Lun L, Jiang X et al (2021) APE1 facilitates PD-L1-mediated progression of laryngeal and hypopharyngeal squamous cell carcinoma. Int Immunopharmacol 97:107675. https://doi.org/10.1016/j.intimp.2021.107675

    Article  CAS  PubMed  Google Scholar 

  98. Barchiesi A, Bazzani V, Jabczynska A et al (2021) DNA repair protein APE1 degrades dysfunctional abasic mRNA in Mitochondria affecting oxidative phosphorylation. J Mol Biol 433:167125. https://doi.org/10.1016/j.jmb.2021.167125

    Article  CAS  PubMed  Google Scholar 

  99. Fishel ML, Kelley MR (2007) The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 28:375–395. https://doi.org/10.1016/j.mam.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  100. Bhakat KK, Mantha AK, Mitra S (2009) Transcriptional Regulatory functions of mammalian AP-Endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal 11:621–637. https://doi.org/10.1089/ars.2008.2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Costa SA, Martins B C, et al (2013) DNA repair and resistance to Cancer Therapy. In: New Research Directions in DNA Repair. InTech

  102. Rasha I, Al-Safi SOYS and NN (2012) Small-molecule inhibitors of APE1 DNA repair function: an overview. Curr Mol Pharmacol 5:14–35

    Article  Google Scholar 

  103. Mohammed MZ, Vyjayanti VN, Laughton CA et al (2011) Development and evaluation of human AP endonuclease inhibitors in Melanoma and glioma cell lines. Br J Cancer 104:653–663. https://doi.org/10.1038/sj.bjc.6606058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malfatti MC, Bellina A, Antoniali G, Tell G (2023) Revisiting two decades of Research focused on Targeting APE1 for Cancer Therapy: the pros and cons. Cells 12:1895. https://doi.org/10.3390/cells12141895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pidugu LS, Servius HW, Sevdalis SE et al (2023) Characterizing inhibitors of human AP endonuclease 1. PLoS ONE 18:e0280526. https://doi.org/10.1371/journal.pone.0280526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Programa de pós-graduação em Biociências/Pró-reitoria de extensão, for financial support.

Funding

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Programa de pós-graduação em Biociências (PPGB) e Pró-reitoria de extensão through CNPq funding.

Author information

Authors and Affiliations

Authors

Contributions

PBS, MMSR, ISSA, TGS, MSO, and JAR performed the literature search and drafted the manuscript. PBS and MMSR prepared Figs. 1 and 2. PBS, MMSR, ISSA, and TGS prepared the Table 1. ASF and ALM revised the work.

Corresponding authors

Correspondence to Priscyanne Barreto Siqueira or Mariana Moreno de Sousa Rodrigues.

Ethics declarations

Ethical approval

Not applicable.

Competing of interest

All the authors declare no competing financial interests in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, P.B., de Sousa Rodrigues, M.M., de Amorim, Í.S.S. et al. The APE1/REF-1 and the hallmarks of cancer. Mol Biol Rep 51, 47 (2024). https://doi.org/10.1007/s11033-023-08946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08946-9

Keywords

Navigation