Skip to main content
Log in

Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cardiac apoptosis plays a key role in increased morbidity associated with aging-induced-cardiac disorder. Mitochondria play an important role in cardiac apoptosis, and dynamin-related protein 1 (Drp1), as a main mediator of mitochondrial fission, can trigger the mitophagy process to sustain the mitochondrial quality. The present study was done to determine the effect of vitamin D (VitD) treatment on cardiac hypertrophy through mitophagy regulation in aged animals induced by D-galactose (D-GAL).

Methods and results

Male Wistar rats were randomly divided into four groups: control, D-GAL (aging group), D-GAL co-injected with VitD (D-GAL ± VitD), and D-GAL plus ethanol (D-GAL ± Ethanol). Aging was induced by an intraperitoneal (i.p.) administration of D-GAL at 150 mg/kg daily for eight weeks and also VitD (400 IU/kg) or ethanol was injected (i.p.) into aging rats. Then, the levels of cardiac mitophagy and cardiac apoptosis were determined by measuring the expression of tensin homologue (PTEN)-induced putative kinase 1 (PINK1), Drp1, Bcl2-Associated X (Bax), and B-cell lymphoma 2 (Bcl2) genes. Aging in rats was associated with a reduction in mitophagy and also an increase in apoptosis of the heart through down-regulation of Drp1, PINK1, and Bcl2 genes and also up-regulation of Bax. However, VitD improved cardiac hypertrophy through cardiac mitophagy in D-GAL-induced aging rats.

Conclusion

VitD can inhibit cardiac hypertrophy by an increase in mitophagy and a decrease in apoptosis in the aging heart.

Graphical abstract

The illustration of the suggested mechanism underlying of Vitamin D in cardiac hypertrophy induced by aging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used and analyzed in this study are available from the Corresponding author upon reasonable request.

Abbreviations

ANOVA:

Analysis of variance

Bax :

Bcl-2-associated X protein

Bcl-2 :

B-cell lymphoma 2

BW:

Body Weight

CH:

Cardiac hypertrophy

D-GAL:

D-galactose

Drp1 :

Dynamin-related protein 1

HW:

Heart Weight

i.p.:

Intraperitoneally

PINK1 :

tensin homologue (PTEN)-induced putative kinase 1

QRT-PCR:

Quantitative Real-Time PCR

ROS:

Reactive oxygen species

SE:

Standard error

VitD:

Vitamin D

VDR:

VitD receptor

References

  1. Tepp K et al (2016) Bioenergetics of the aging heart and skeletal muscles: modern concepts and controversies. Ageing Res Rev 28:1–14

    Article  CAS  PubMed  Google Scholar 

  2. Chadda KR et al (2018) Ageing, the autonomic nervous system and arrhythmia: from brain to heart. Ageing Res Rev 48:40–50

    Article  PubMed  Google Scholar 

  3. Thai PN et al (2019) Mitochondrial quality control in aging and heart failure: influence of ketone bodies and mitofusin-stabilizing peptides. Front Physiol 10:382

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang K et al (2013) Thioredoxin reductase was nitrated in the aging heart after myocardial ischemia/reperfusion. Rejuvenation Res 16(5):377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwak H-B (2013) Effects of aging and exercise training on apoptosis in the heart. J Exerc Rehabil 9(2):212

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang R et al (2020) Mitophagy in cardiovascular homeostasis. Mech Ageing De 188:111245

    Article  CAS  Google Scholar 

  7. No M-H et al (2020) Aging promotes mitochondria-mediated apoptosis in rat hearts. Life 10(9):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo H et al (2020) A healthy heart and a healthy brain: looking at mitophagy. Front Cell Dev Biol 8:294

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma L et al (2017) Restoring pharmacologic preconditioning in the aging heart: role of mitophagy/autophagy. J Gerontol: Series A 72(4):489–498

    CAS  Google Scholar 

  10. Chen G, Kroemer G, Kepp O (2020) Mitophagy: an emerging role in aging and age-associated diseases. Front Cell Dev Biol 8:200

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wei X et al (2021) Decreased dynamin-related protein 1-related mitophagy induces myocardial apoptosis in the aging heart. Acta Biochim Biophys Sin 53(10):1354–1366

    Article  CAS  PubMed  Google Scholar 

  12. Tong M, Zablocki D, Sadoshima J (2020) The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 142:138–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tong M and J, et al (2016) Mitochondrial autophagy in car-diomyopathy. Curr Opin Genet Dev 38:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren XC et al (2017) Resveratrol ameliorates mitochondrial elongation via Drp1/Parkin/PINK1 signaling in senescent-like cardiomyocytes. Oxid Med Cell Longev

  15. Tsubouchi K et al (2018) PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen 38

  16. Ashrafi G et al (2013) The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria. Cell Death Differ 20(1):31–42

    Article  CAS  PubMed  Google Scholar 

  17. Nardin M et al (2016) Vitamin D status, diabetes mellitus and coronary artery disease in patients undergoing coronary angiography. Atherosclerosis 250 114 – 21

  18. Seker T et al (2015) Lower serum 25-hydroxyvitamin D level is associated with impaired myocardial performance and left ventricle hypertrophy in newly diagnosed hypertensive patients. Anatol J Cardiol 15(9):744

    Article  CAS  PubMed  Google Scholar 

  19. Hazique M et al (2022) A study of vitamin D and its correlation with severity and complication of congestive heart failure: a systematic review. Cureus 6 14(9):28873

    Google Scholar 

  20. Witte KK et al (2016) Effects of vitamin D on cardiac function in patients with chronic HF: the VINDICATE study. J Am Coll Cardiol 67(22):2593–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norman P et al (2014) Vitamin D and cardiovascular disease. Circ Re 17 114(2) 379 – 93

  22. Greco D et al (2018) Vitamin D replacement ameliorates serum lipoprotein functions, adipokine profile and subclinical atherosclerosis in pre-menopausal women. Nutr Metab Cardiovasc Dis 28(8):822–882

    Article  CAS  PubMed  Google Scholar 

  23. Stokić E et al (2015) Vitamin D and dysfunctional adipose tissue in obesity. Angiology 66(7):613–618

    Article  PubMed  Google Scholar 

  24. Dehghani A et al (2019) Resveratrol and 1, 25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats: evaluation of serum and cardiac levels of klotho. Aging Clin Exp Res 31 1195 – 205

  25. Jeremy M, Gurusubramanian G, Roy VK (2019) Vitamin D3 regulates apoptosis and proliferation in the testis of D-galactose-induced aged rat model. Sci Rep 9(1):14103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu J et al (2020) Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1–p53 activation. Chem Biol Interact 317:108972

    Article  CAS  PubMed  Google Scholar 

  27. Matthews D, Mittleman G (2017) Age-dependent effects of chronic intermittent ethanol treatment: gross motor behavior and body weight in aged, adult and adolescent rats. Neurosci Lett 14:657:146–150

    Article  Google Scholar 

  28. Husain K et al (2014) Alcohol-induced hypertension: mechanism and prevention. World J Cardio 6(5):245–252

    Article  Google Scholar 

  29. Liu D et al (2019) Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging 11(20):8982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira RM et al (2018) Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 23:123–129

    Article  CAS  PubMed  Google Scholar 

  31. Qiu Z et al (2019) The role of myocardial mitochondrial quality control in heart failure. Front Pharmacol 10:1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryu D et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22(8):879–888

    Article  CAS  PubMed  Google Scholar 

  33. Hasnat M et al (2019) Drp1-associated mitochondrial dysfunction and mitochondrial autophagy: a novel mechanism in triptolide-induced hepatotoxicity. Cell Biol Toxicol 35:267–280

    Article  CAS  PubMed  Google Scholar 

  34. Wang DB et al (2013) Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci Res 33(41):357–365

    Google Scholar 

  35. Li Y, Liu X (2018) Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol 233(8):5589–5597

    Article  CAS  PubMed  Google Scholar 

  36. Tong Met al et al (2023) Distinct roles of DRP1 in conventional and alternative mitophagy in obesity cardiomyopathy. Circ Res 133(1):6–21

    Article  Google Scholar 

  37. Shirakabe A et al (2015) Drp1-dependent mitochondrial autophagy plays a protective role in response to pressure overload Induced mitochondrial dysfunction and heart failure. Circulation 132:17574

    Article  Google Scholar 

  38. Zhang Y et al (2020) Drp1-dependent mitochondrial fission contributes to cr (VI)-induced mitophagy and hepatotoxicity. Ecotoxicol Environ Saf 203:110928

    Article  CAS  PubMed  Google Scholar 

  39. Buhlman L et al (2014) Functional interplay between parkin and Drp1 in mitochondrial fission and clearance. Biochim Biophys Acta Mol Cell Res 1843(9):2012–2026

    Article  CAS  Google Scholar 

  40. Morales PE et al (2020) Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822

    Article  PubMed  Google Scholar 

  41. Lin X-H et al (2020) Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia. Oncogenesis 9(7):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bakula D and M (2020) Scheibye-Knudsen, MitophAging: mitophagy in aging and disease. Front Cell Dev Biol 8:239

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song M et al (2015) Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res 117(4):346–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wan Q et al (2018) Mir-499-5p attenuates mitochondrial fission and cell apoptosis via P21 in Doxorubicin Cardiotoxicity. Front Genet 9:734

    Article  CAS  PubMed  Google Scholar 

  45. Ham SJ et al (2020) Decision between Mitophagy and apoptosis by parkin via VDAC1 ubiquitination. Proc Natl Acad Sci 117(8):4281–4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren X et al (2017) Resveratrol ameliorates mitochondrial elongation via Drp1/Parkin/PINK1 signaling in senescent-like cardiomyocytes. Oxid Med Cell Longev 2017:4175353

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wan M et al (2022) YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI3K/AKT/mTOR pathway. J Ethnopharmacol 1(285):114835

    Article  Google Scholar 

  48. Reddy AM et al (2022) Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI j 21:967

    Google Scholar 

  49. Lee T-L et al (2020) Vitamin D attenuates ischemia/reperfusion-induced cardiac injury by reducing mitochondrial fission and mitophagy. Front Pharmacol 11:604700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milazzo V et al (2017) Vitamin D and acute myocardial infarction. World J Cardiol 9(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee KJ et al (2021) Cytoprotective effect of vitamin d on doxorubicin-induced cardiac toxicity in triple negative breast cancer. Int J Mol Sci 22(14):7439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Latic N, Erben RG (2020) Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int J Mol Sci 21(18):6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferder Met al et al (2013) The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol 304(11):1027–1039

    Article  Google Scholar 

  54. Pilz S et al (2016) Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 13(7):404–417

    Article  CAS  PubMed  Google Scholar 

  55. Chen S et al (2011) Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124(17):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and appreciate the Hamadan University of Medical Sciences for funding the present research.

Funding

This study was funded by the Vice-Chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 140005124073).

Author information

Authors and Affiliations

Authors

Contributions

SSh and KHR-A contributed to data collection and interpretation and wrote the manuscript. AK performed the experiments and provided reagents.IS conceived and designed the experiments.SH provided reagents and materials and analyzed the data. SSA and PH contributed to data collection and analysis.FR-A designed the study, contributed to data collection and interpretation, and wrote the manuscript.

Corresponding author

Correspondence to Fatemeh Ramezani-Aliakbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval was granted by the Ethics Committee of Hamadan University of Medical Sciences (Ethics code: IR.UMSHA.REC.1400.269).

Consent for publication

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidi, S., Ramezani-Aliakbari, K., Komaki, A. et al. Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy. Mol Biol Rep 50, 10147–10155 (2023). https://doi.org/10.1007/s11033-023-08875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08875-7

Keywords

Navigation