Skip to main content

Advertisement

Log in

Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer metastasis is one of the major clinical challenges worldwide due to limited existing effective treatments. Metastasis roots from the host organ of origin and gradually migrates to different regional and distant organs. In different breast cancer subtypes, different organs like bones, liver, lungs and brain are targeted by the metastatic tumor cells. Cancer renders mortality to their respective metastasizing sites like bones, brain, liver, and lungs. Metastatic breast cancers are best treated and managed if detected at an early stage. Metastasis is regulated by various molecular activators and suppressors. The conventional theory of ‘seed and soil’ states that metastatic tumor cells move to tumor microenvironment that has favorable conditions like blood flow for them to grow just like seeds grows when planted in fertile land. Additionally, different coding as well as non-coding RNAs play a very significant role in the process of metastasis by modulating their expression levels leading to a crosstalk of various tumorigenic cascades. Treatments for metastasis is also very critical in controlling this lethal process. Detecting breast cancer metastasis at an early stage is crucial for managing and predicting metastatic progression. In this review, we have compiled several factors that can be targeted to manage the onset and gradual stages of breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

Abbreviations

BC:

Breast Cancer

TNBC:

Triple negative Breast Cancer

CA:

Cancer Antigen

CEA:

Carcinoembryonic Antigen

TMs:

Tumor markers

CTCs:

Circulating tumor cells

OS:

Overall survival

TCs:

Tumor cells

ncRNAs:

Non-coding RNAs

TME:

Tumor microenvironment

TDSFs:

Tumor-derived soluble factors

BMDCs:

Bone marrow-derived cells

VEGF:

Vascular endothelial growth factor

PIGF:

Placental growth factor

BMDCs:

Bone marrow mesenchymal stem cells

BCCs:

Breast Cancer Cells

LOXL:

Lysyl oxidase like

MMP:

Matrix Metalloproteinase

PPP:

Pentose phosphate

BBB:

Blood brain barrier

TEM:

Transendothelial migration

TJs:

Tight junctions

IL:

Interleukin

uPA:

Urokinase plasminogen activator

L1CAM:

L1 cell adhesion molecule

NF-κB:

Nuclear factor kappa-light-chain enhancer of activated B cells

TNFα:

Tumor necrosis factor alpha

TGFβ:

Tumor growth factor beta

cGAMP:

Cyclic guanosine monophosphate-adenosine monophosphate

INF:

Interferon

STAT1:

Signal transducer and activator of transcription 1

EMT:

Epithelial-to-mesenchymal transition

MET:

Mesenchymal to epithelial transition

ECs:

Endothelial cells

PTHrP:

Parathyroid hormone-related protein

EGF:

Endothelial growth factor

IGFs:

Insulin-like growth factors

SDFs:

Stromal cells derived factors

iMCs:

Immature myeloid cells

CAFs:

Cancer associated fibroblasts

MDSCs:

Myeloid-derived suppressor cells

BCBM:

BC Brain Metastasis

BCLM:

BC Liver Metastasis

Treg:

Regulatory T cells

MDSCs:

Myeloid-derived suppressor cells

NOD/SCID:

Nonobese diabetic/severe combined immunodeficiency

References

  1. Wang L, Zhang S, Wang X (2021) The metabolic mechanisms of breast cancer metastasis. Front Oncol 10:602416

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sihto H, Lundin J, Lundin M et al (2011) Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: A nationwide cohort study. Breast Cancer Res. https://doi.org/10.1186/BCR2944

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kast K, Link T, Friedrich K et al (2015) (2015) Impact of breast cancer subtypes and patterns of metastasis on outcome. Breast Cancer Res Treat 1503(150):621–629. https://doi.org/10.1007/S10549-015-3341-3

    Article  Google Scholar 

  4. Yerushalmi R, Tyldesley S, Kennecke H et al (2012) Tumor markers in metastatic breast cancer subtypes: frequency of elevation and correlation with outcome. Ann Oncol 23:338–345. https://doi.org/10.1093/ANNONC/MDR154

    Article  CAS  PubMed  Google Scholar 

  5. CTCs as Predictors of Metastatic Spread in Breast Cancer. https://www.medscape.com/viewarticle/837900. Accessed 29 Mar 2022

  6. Goodman OB, Fink LM, Symanowski JT et al (2009) Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol Biomarkers Prev 18:1904–1913. https://doi.org/10.1158/1055-9965.EPI-08-1173

    Article  CAS  PubMed  Google Scholar 

  7. Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114. https://doi.org/10.1158/0008-5472.CAN-07-5644

    Article  CAS  PubMed  Google Scholar 

  8. Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13:1033–1067. https://doi.org/10.1677/ERC-06-0001

    Article  CAS  PubMed  Google Scholar 

  9. Sun YF, Yang XR, Zhou J et al (2011) (2011) Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol 1378(137):1151–1173. https://doi.org/10.1007/S00432-011-0988-Y

    Article  Google Scholar 

  10. Razak NBA, Jones G, Bhandari M et al (2018) Cancer-associated thrombosis: an overview of mechanisms, risk factors, and treatment. Cancers (Basel). https://doi.org/10.3390/CANCERS10100380

    Article  Google Scholar 

  11. Fisher B, Jeong JH, Dignam J et al (2001) Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 2001:62–66

    Article  Google Scholar 

  12. Willeumier JJ, Linden YM, va. der, Sande MAJ va. de, Dijkstra PDS, (2016) Treatment of pathological fractures of the long bones. EFORT Open Rev 1:136. https://doi.org/10.1302/2058-5241.1.000008

    Article  PubMed  PubMed Central  Google Scholar 

  13. High Calcium Levels or Hypercalcemia | Cancer.Net. https://www.cancer.net/coping-with-cancer/physical-emotional-and-social-effects-cancer/managing-physical-side-effects/high-calcium-levels-or-hypercalcemia. Accessed 30 Mar 2022

  14. Jin L, Han B, Siegel E et al (2018) Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol Ther. https://doi.org/10.1080/15384047.2018.1456599

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma R, Feng Y, Lin S et al (2015) Mechanisms involved in breast cancer liver metastasis. J Transl Med 13:64

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brain and Spinal Cord Tumors: Hope Through Research | National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Brain-and-Spinal-Tumors-Hope-Through. Accessed 30 Mar 2022

  17. Woll PJ, Knight RK, Rubens RD (1987) Pericardial effusion complicating breast cancer. J R Soc Med. https://doi.org/10.1177/014107688708000811

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim JY, Jeon JY, Choi YJ et al (2020) Characteristics of metastatic brachial plexopathy in patients with breast cancer. Support Care Cancer. https://doi.org/10.1007/s00520-019-04997-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Talmadge JE, Fidler IJ (2010) AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res 70:5649–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nathanson SD, Detmar M, Padera TP et al (2021) Mechanisms of breast cancer metastasis. Clin Exp Metastasis 1:1–21. https://doi.org/10.1007/S10585-021-10090-2

    Article  Google Scholar 

  21. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146. https://doi.org/10.1038/283139A0

    Article  CAS  PubMed  Google Scholar 

  22. McSherry EA, Donatello S, Hopkins AM, McDonnell S (2007) Molecular basis of invasion in breast cancer. Cell Mol Life Sci 64:3201–3218. https://doi.org/10.1007/S00018-007-7388-0

    Article  CAS  PubMed  Google Scholar 

  23. Bell CD, Waizbard E (1986) Variability of cell size in primary and metastatic human breast carcinoma. Invasion Metastasis 6:11–20

    CAS  PubMed  Google Scholar 

  24. Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic Niche. Cancer Cell 30:668–681. https://doi.org/10.1016/J.CCELL.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the “pre-metastatic niche”: within bone and beyond. Cancer Metastasis Rev 25:521–529. https://doi.org/10.1007/S10555-006-9036-9

    Article  PubMed  Google Scholar 

  26. Wu S, Zheng Q, Xing X et al (2018) Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J Exp Clin Cancer Res. https://doi.org/10.1186/S13046-018-0761-Z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wong CCL, Gilkes DM, Zhang H et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A 108:16369–16374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587. https://doi.org/10.1007/S10555-006-9019-X

    Article  CAS  PubMed  Google Scholar 

  29. Gandhi N, Das GM (2019) Metabolic reprogramming in breast cancer and its therapeutic implications. Cells 8:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simões RV, Serganova IS, Kruchevsky N et al (2015) Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia (United States). https://doi.org/10.1016/j.neo.2015.08.005

    Article  Google Scholar 

  31. Chen EI, Hewel J, Krueger JS et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res: https://doi.org/10.1158/0008-5472.CAN-06-3137

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dupuy F, Tabariès S, Andrzejewski S et al (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab: https://doi.org/10.1016/j.cmet.2015.08.007

    Article  PubMed  Google Scholar 

  33. Verduzco D, Lloyd M, Xu L et al (2015) Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. https://doi.org/10.1371/journal.pone.0120958

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med. https://doi.org/10.1111/jcmm.12004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stewart DA, Cooper CR, Sikes RA (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fazakas C, Wilhelm I, Nagyoszi P et al (2011) Transmigration of melanoma cells through the blood-brain barrier: Role of endothelial tight junctions and melanoma-released serine proteases. PLoS ONE. https://doi.org/10.1371/journal.pone.0020758

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wilhelm I, Molnár J, Fazakas C et al (2013) Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci 14:1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miles FL, Pruitt FL, Van Golen KL, Cooper CR (2008) Stepping out of the flow: Capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305

    Article  CAS  PubMed  Google Scholar 

  39. Kienast Y, Von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. https://doi.org/10.1038/nm.2072

    Article  PubMed  Google Scholar 

  40. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24-Breast cancer cells exhibit enhanced invase properties: An early step necessary for metastasis. Breast Cancer Res. https://doi.org/10.1186/bcr1610

    Article  PubMed  PubMed Central  Google Scholar 

  41. Edwards DR, Murphy G (1998) Cancer proteases - invasion and more. Nature 394:527

    Article  CAS  PubMed  Google Scholar 

  42. Valiente M, Obenauf AC, Jin X et al (2014) Serpins promote cancer cell survival and vascular Co-option in brain metastasis. Cell. https://doi.org/10.1016/j.cell.2014.01.040

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sathiyanadan K, Coisne C, Enzmann G et al (2014) PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol. https://doi.org/10.1002/eji.201344214

    Article  PubMed  Google Scholar 

  44. Carbonell WS, Ansorga O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS ONE. https://doi.org/10.1371/journal.pone.0005857

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seth P, Koul N (2008) Astrocyte, the star avatar: Redefined. J Biosci 33:405

    Article  PubMed  Google Scholar 

  47. Seike T, Fujita K, Yamakawa Y et al (2011) Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis. https://doi.org/10.1007/s10585-010-9354-8

    Article  PubMed  Google Scholar 

  48. Chen Q, Boire A, Jin X et al (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. https://doi.org/10.1038/nature18268

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim SJ, Kim JS, Park ES et al (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia. https://doi.org/10.1593/neo.11112

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xing F, Kobayashi A, Okuda H et al (2013) Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med. https://doi.org/10.1002/emmm.201201623

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169

    Article  PubMed  Google Scholar 

  52. Guise TA (1997) Parathyroid hormone-related protein and bone metastases. Cancer 80:1572

    Article  CAS  PubMed  Google Scholar 

  53. Karaplis AC, Goltzman D (2000) PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord. https://doi.org/10.1023/A:1026526703898

    Article  PubMed  Google Scholar 

  54. Kawashima I, Takiguchi Y (1992) Interleukin-11: A novel stroma-derived cytokine. Prog Growth Factor Res. https://doi.org/10.1016/0955-2235(92)90019-E

    Article  PubMed  Google Scholar 

  55. Fasoulakis Z, Kolios G, Papamanolis V, Kontomanolis EN (2018) Interleukins associated with breast cancer. Cureus. https://doi.org/10.7759/cureus.3549

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. https://doi.org/10.1016/S1535-6108(03)00132-6

    Article  PubMed  Google Scholar 

  57. Kinder M, Chislock E, Bussard KM et al (2008) Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2007.09.021

    Article  PubMed  Google Scholar 

  58. Liang M, Ma Q, Ding N et al (2019) (2019) IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis 105(10):1–12. https://doi.org/10.1038/s41419-019-1594-1

    Article  CAS  Google Scholar 

  59. Maroni P, Bendinelli P, Ferraretto A, Lombardi G (2021) Interleukin 11 (IL-11): Role(s) in breast cancer bone metastases. Biomed. https://doi.org/10.3390/BIOMEDICINES9060659

    Article  Google Scholar 

  60. Kingsley LA, Fournier PGJ, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6:2609

    Article  CAS  PubMed  Google Scholar 

  61. Khosla S (2001) Minireview: The OPG/RANKL/RANK system. Endocrinology 142:5050

    Article  CAS  PubMed  Google Scholar 

  62. Coleman RE, Lipton A, Roodman GD et al (2010) Metastasis and bone loss: Advancing treatment and prevention. Cancer Treat Rev 36:615

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bilezikian JP, Bouillon R, Clemens T et al (2018) Primer on the metabolic bone diseases and disorders of mineral metabolism. Indian J Med Res 144:489

    Google Scholar 

  64. Stott SL, Hsu CH, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1012539107

    Article  PubMed  PubMed Central  Google Scholar 

  65. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: Quantitative approaches for in vivo models. BioEssays 24:885

    Article  CAS  PubMed  Google Scholar 

  66. Koop S, MacDonald IC, Luzzi K et al (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55:2520

    CAS  PubMed  Google Scholar 

  67. Qi Y, Zhang L, Wang Z et al (2021) Efficacy and safety of anti-PD-1/ PD-L1 monotherapy for metastatic breast cancer: clinical evidence. Front Pharmacol. https://doi.org/10.3389/fphar.2021.653521

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yan W, Wu X, Zhou W et al (2018) Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol: https://doi.org/10.1038/s41556-018-0083-6

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang SE (2021) Abstract IA025: Local and systemic effects of cancer-cell-secreted extracellular miRNA. Cancer Res. https://doi.org/10.1158/1538-7445.tme21-ia025

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou W, Fong MY, Min Y et al (2014) Cancer-Secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515. https://doi.org/10.1016/j.ccr.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang Y, Li CW, Chan LC et al (2018) Exosomal PD-L1 harbors active defense function to suppress t cell killing of breast cancer cells and promote tumor growth. Cell Res 28:862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fong MY, Zhou W, Liu L et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. https://doi.org/10.1038/ncb3094

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature. https://doi.org/10.1038/nature15756

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lokody I (2014) Genetics: Exosomally derived miR-105 destroys tight junctions. Nat Rev Cancer 14:386

    Article  CAS  PubMed  Google Scholar 

  75. Joo YN, Jin H, Eun SY et al (2014) P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 5:9322

    Article  PubMed  PubMed Central  Google Scholar 

  76. Padua D, Zhang XH, Wang Q et al (2008) SUPP_TGF β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Q, Zhang XHF, Massagué J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. https://doi.org/10.1016/j.ccr.2011.08.025

    Article  PubMed  PubMed Central  Google Scholar 

  78. Eisenblaetter M, Flores-Borja F, Lee JJ et al (2017) Visualization of tumor-immune interaction—Target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics. https://doi.org/10.7150/thno.17138

    Article  PubMed  PubMed Central  Google Scholar 

  79. Furusato B, Mohamed A, Uhlén M, Rhim JS (2010) CXCR4 and cancer. Pathol Int. https://doi.org/10.1111/j.1440-1827.2010.02548.x

    Article  PubMed  Google Scholar 

  80. Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature. https://doi.org/10.1038/35065016

    Article  PubMed  Google Scholar 

  81. Lock FE, McDonald PC, Lou Y et al (2013) Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene. https://doi.org/10.1038/onc.2012.550

    Article  PubMed  Google Scholar 

  82. Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bates AL, Pickup MW, Hallett MA et al (2015) Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases. J Pathol. https://doi.org/10.1002/path.4493

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gebhardt C, Németh J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2006.05.017

    Article  PubMed  Google Scholar 

  85. Srivastava K, Hu J, Korn C et al (2014) Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell. https://doi.org/10.1016/j.ccell.2014.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rezaeeyan H, Gh NM, BF, Arabfard M, (2023) A computational approach for the identification of key genes and biological pathways of chronic lung diseases: a systems biology approach. BMC Med Genomics. https://doi.org/10.1186/s12920-023-01596-7

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yang L, Carbone DP (2004) Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res. https://doi.org/10.1016/S0065-230X(04)92002-7

    Article  PubMed  Google Scholar 

  88. Colpaert CG, Vermeulen PB, Fox SB et al (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat. https://doi.org/10.1023/A:1025702330207

    Article  PubMed  Google Scholar 

  89. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51:293

    Article  CAS  PubMed  Google Scholar 

  90. Ai S, Cheng XW, Inoue A et al (2007) Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2007.10.027

    Article  PubMed  Google Scholar 

  91. Zhao D, Tu Y, Wan L et al (2013) In vivo monitoring of angiogenesis inhibition via down-regulation of Mir-21 in a VEGFR2-Luc murine breast cancer model using bioluminescent imaging. PLoS ONE. https://doi.org/10.1371/journal.pone.0071472

    Article  PubMed  PubMed Central  Google Scholar 

  92. Santibañez JFS, Quintanilla M, Bernabeu C (2011) TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci 121:233

    Article  Google Scholar 

  93. Morrison CD, Parvani JG, Schiemann WP (2013) The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett 341:30–40

    Article  CAS  PubMed  Google Scholar 

  94. Nasser MW, Elbaz M, Ahirwar DK, Ganju RK (2015) Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett 365:11–22

    Article  CAS  PubMed  Google Scholar 

  95. Hirbe AC, Morgan EA, Weilbaecher KN (2010) The CXCR4/SDF-1 chemokine axis: a potential therapeutic target for bone metastases? Curr Pharm Des. https://doi.org/10.2174/138161210791034012

    Article  PubMed  Google Scholar 

  96. Guan X (2015) Cancer metastases: Challenges and opportunities. Acta Pharm Sin B 5:402

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fiaschi T, Marini A, Giannoni E et al (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-12-1949

    Article  PubMed  Google Scholar 

  98. Kai AKL, Chan LK, Lo RCL et al (2016) Down-regulation of TIMP2 by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.28577

    Article  PubMed  Google Scholar 

  99. Duan XF, Dong NN, Zhang T (2011) Li Q (2011) The prognostic analysis of clinical breast cancer subtypes among patients with liver metastases from breast cancer. Int J Clin Oncol 181(18):26–32. https://doi.org/10.1007/S10147-011-0336-X

    Article  Google Scholar 

  100. Stessels F, Van Den Eynden G, Van Der Auwera I et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer. https://doi.org/10.1038/sj.bjc.6601727

    Article  PubMed  PubMed Central  Google Scholar 

  101. Reichen J (1999) The role of the sinusoidal endothelium in liver function. News Physiol Sci. https://doi.org/10.1152/physiologyonline.1999.14.3.117

    Article  PubMed  Google Scholar 

  102. Rodríguez-Pinilla SM, Sarrío D, Honrado E et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-05-2281

    Article  PubMed  Google Scholar 

  103. McAllaster JD, Cohen MS (2011) Role of the lymphatics in cancer metastasis and chemotherapy applications. Adv Drug Deliv Rev 63:867–875. https://doi.org/10.1016/J.ADDR.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  104. Rosenblum GA (1983) Metastatic breast cancer in the eyelid. Cutis 31:411–417

    CAS  PubMed  Google Scholar 

  105. Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P (2021) The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel). 13:2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xie HY, Shao ZM, Li DQ (2017) Tumor microenvironment: Driving forces and potential therapeutic targets for breast cancer metastasis. Chin J Cancer. https://doi.org/10.1186/s40880-017-0202-y

    Article  PubMed  PubMed Central  Google Scholar 

  107. Boyer LA, Tong IL, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. https://doi.org/10.1016/j.cell.2005.08.020

    Article  PubMed  PubMed Central  Google Scholar 

  108. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. https://doi.org/10.1016/S0002-9440(10)63501-8

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yang MH, Wu MZ, Chiou SH et al (2008) Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol. https://doi.org/10.1038/ncb1691

    Article  PubMed  PubMed Central  Google Scholar 

  111. Krishnamachary B, Zagzag D, Nagasawa H et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-05-3719

    Article  PubMed  Google Scholar 

  112. Guo W, Keckesova Z, Donaher JL et al (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. https://doi.org/10.1016/j.cell.2012.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  113. Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. https://doi.org/10.1016/j.ccr.2008.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. https://doi.org/10.1038/nature04186

    Article  PubMed  PubMed Central  Google Scholar 

  115. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  PubMed  Google Scholar 

  116. Serrano I, Mcdonald PC, Lock FE, Dedhar S (2013) Role of the integrin-linked kinase (ILK)/Rictor complex in TGFβ-1-induced epithelial-mesenchymal transition (EMT). Oncogene. https://doi.org/10.1038/onc.2012.30

    Article  PubMed  Google Scholar 

  117. Medici D, Hay ED, Olsen BR (2008) Snail and slug promote epithelial-mesenchymal transition through β-catenin-T-cell factor-4-dependent expression of transforming growth factor-β3. Mol Biol Cell. https://doi.org/10.1091/mbc.E08-05-0506

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chakrabarti R, Wei Y, Romano RA et al (2012) Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells. https://doi.org/10.1002/stem.1112

    Article  PubMed  Google Scholar 

  119. Chakrabarti R, Hwang J, Andres Blanco M et al (2012) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. https://doi.org/10.1038/ncb2607

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. https://doi.org/10.1126/science.1228522

    Article  PubMed  PubMed Central  Google Scholar 

  121. Brabletz T (2012) To differentiate or not-routes towards metastasis. Nat Rev Cancer 12:425

    Article  CAS  PubMed  Google Scholar 

  122. Liu Y, Xiang X, Zhuang X et al (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176:2490–2499. https://doi.org/10.2353/AJPATH.2010.090777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Slaby O, Laga R, Sedlacek O (2017) Therapeutic targeting of non-coding RNAs in cancer. Biochem J 474:4219–4251. https://doi.org/10.1042/BCJ20170079

    Article  CAS  PubMed  Google Scholar 

  124. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655. https://doi.org/10.1016/J.CELL.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Parasramka MA, Maji S, Matsuda A et al (2016) Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther 161:67–78. https://doi.org/10.1016/J.PHARMTHERA.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Malih S, Saidijam M (2015) Malih N (2015) A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumor Biol 372(37):1479–1485. https://doi.org/10.1007/S13277-015-4572-Y

    Article  Google Scholar 

  127. Wang M, Yu F, Wu W et al (2017) Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 13:1497–1506. https://doi.org/10.7150/IJBS.22531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu Y, Shi W, Tang T et al (2019) miR-29a contributes to breast cancer cells epithelial–mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis. https://doi.org/10.1038/s41419-019-1437-0

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kwon JJ, Factora TD, Dey S, Kota J (2019) A systematic review of miR-29 in cancer. Mol Ther Oncolytics 12:173

    Article  CAS  PubMed  Google Scholar 

  130. Nygren MK, Tekle C, Ingebrigtsen VA et al (2014) Identifying microRNAs regulating B7–H3 in breast cancer: the clinical impact of microRNA-29c. Br J Cancer. https://doi.org/10.1038/bjc.2014.113

    Article  PubMed  PubMed Central  Google Scholar 

  131. Raval A, Joshi J, Shah F (2022) Significance of metastamiR-10b in breast cancer therapeutics. J Egypt Natl Canc Inst 34:19

    Article  PubMed  Google Scholar 

  132. Lund AH (2010) MiR-10 in development and cancer. Cell Death Differ 17:209–214

    Article  CAS  PubMed  Google Scholar 

  133. Bao C, Chen J, Chen D et al (2020) MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis. https://doi.org/10.1038/s41419-020-02855-6

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pan S, Yu F, Gong C, Song E (2009) Tumor invasion and metastasis initiated by mir-106b in breast cancer by targeting BRMS1 and RB. Cancer Res. https://doi.org/10.1158/0008-5472.sabcs-09-6157

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang M, Liu Q, Mi S et al (2011) Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol. https://doi.org/10.4049/jimmunol.1002989

    Article  PubMed  Google Scholar 

  137. Bar I, Merhi A, Abdel-Sater F et al (2017) The MicroRNA miR-210 is expressed by cancer cells but also by the tumor microenvironment in triple-negative breast cancer. J Histochem Cytochem. https://doi.org/10.1369/0022155417702849

    Article  PubMed  PubMed Central  Google Scholar 

  138. Png KJ, Halberg N, Yoshida M, Tavazoie SF (2012) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. https://doi.org/10.1038/nature10661

    Article  Google Scholar 

  139. Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359. https://doi.org/10.1038/cr.2008.24

    Article  CAS  PubMed  Google Scholar 

  140. Wang N, Tan HY, Feng YG et al (2019) microRNA-23a in human cancer: Its roles, mechanisms and therapeutic relevance. Cancers (Basel). 11:7

    Article  CAS  Google Scholar 

  141. Korpal M, Ell BJ, Buffa FM et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. https://doi.org/10.1038/nm.2401

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yu W, Li D, Zhang Y et al (2019) MiR-142-5p acts as a significant regulator through promoting proliferation, invasion, and migration in breast cancer modulated by targeting SORBS1. Technol Cancer Res Treat. https://doi.org/10.1177/1533033819892264

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dastmalchi N, Baradaran B, Banan Khojasteh SM et al (2021) miR-424: A novel potential therapeutic target and prognostic factor in malignancies. Cell Biol Int 45:720–730

    Article  CAS  PubMed  Google Scholar 

  144. Mahajan M, Sitasawad S (2022) Mir-140-5p attenuates hypoxia-induced breast cancer progression by targeting nrf2/ho-1 axis in a keap1-independent mechanism. Cells. https://doi.org/10.3390/cells11010012

    Article  PubMed  PubMed Central  Google Scholar 

  145. Moradi-Chaleshtori M, Bandehpour M, Heidari N et al (2021) Exosome-mediated miR-33 transfer induces M1 polarization in mouse macrophages and exerts antitumor effect in 4T1 breast cancer cell line. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2020.107198

    Article  PubMed  Google Scholar 

  146. Otmani K, Lewalle P (2021) Tumor Suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol 11:708765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Webster RJ, Giles KM, Price KJ et al (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem. https://doi.org/10.1074/jbc.M804280200

    Article  PubMed  Google Scholar 

  148. Xu D, Takeshita F, Hino Y et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol. https://doi.org/10.1083/jcb.201010100

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yu F, Deng H, Yao H et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. https://doi.org/10.1038/onc.2010.167

    Article  PubMed  PubMed Central  Google Scholar 

  150. Valastyan S, Reinhardt F, Benaich N et al (2009) A Pleiotropically Acting MicroRNA, miR-31, inhibits breast cancer metastasis. Cell. https://doi.org/10.1016/j.cell.2009.03.047

    Article  PubMed  PubMed Central  Google Scholar 

  151. Harris TA, Yamakuchi M, Ferlito M et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0707493105

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sachdeva M, Zhu S, Wu F et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0808042106

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li XF, Yan PJ, Shao ZM (2009) Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. https://doi.org/10.1038/onc.2009.245

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. https://doi.org/10.1038/cr.2009.18

    Article  PubMed  Google Scholar 

  155. Vetter G, Saumet A, Moes M et al (2010) MiR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. https://doi.org/10.1038/onc.2010.181

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yu Z, Willmarth NE, Zhou J et al (2010) microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1002080107

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yu Z, Wang C, Wang M et al (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. https://doi.org/10.1083/jcb.200801079

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li QQ, Chen ZQ, Cao XX et al (2011) Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. https://doi.org/10.1038/cdd.2010.103

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sachdeva M, Mo YY (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-2021

    Article  PubMed  Google Scholar 

  160. Ryu S, McDonnell K, Choi H et al (2013) Suppression of miRNA-708 by Polycomb Group promotes metastases by calcium-induced cell migration. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.11.019

    Article  PubMed  Google Scholar 

  161. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 32:1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tian X, Tian J, Tang X et al (2015) Particulate β-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expression. Oncoimmunology. https://doi.org/10.1080/2162402X.2015.1038687

    Article  PubMed  PubMed Central  Google Scholar 

  164. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35:408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ji J, Yin Y, Ju H et al (2018) Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. Cell Death Dis. https://doi.org/10.1038/s41419-018-0528-7

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wu K, Zhao Z, Liu K et al (2017) Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment. Cell Cycle. https://doi.org/10.1080/15384101.2017.1317416

    Article  PubMed  PubMed Central  Google Scholar 

  167. T. K, H. F, T. N, et al (2009) Intense accumulation of Tc-99m MDP in pericardial metastasis from breast cancer. Clin Nucl Med 34:173

    Article  Google Scholar 

  168. Titi MA, Anabtawi A, Newland AD (2010) Isolated gastrointestinal metastasis of breast carcinoma: A case report. Case Rep Med. https://doi.org/10.1155/2010/615923

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhang CY, Yu MS, Li X et al (2017) Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumor Biol. https://doi.org/10.1177/1010428317701311

    Article  Google Scholar 

  170. Li S, Zhou J, Wang Z et al (2018) Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed Pharmacother 104:451–457. https://doi.org/10.1016/J.BIOPHA.2018.05.056

    Article  CAS  PubMed  Google Scholar 

  171. Li W, Jia G, Qu Y et al (2017) Long non-coding RNA (LncRNA) HOXA11-AS promotes breast cancer invasion and metastasis by regulating epithelial-mesenchymal transition. Med Sci Monit 23:3393–3403

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gómez-Maldonado L, Tiana M, Roche O et al (2015) (2014) EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 3420(34):2609–2620. https://doi.org/10.1038/onc.2014.200

    Article  CAS  Google Scholar 

  173. Zhuo W (2017) Kang Y (2017) Lnc-ing ROR1–HER3 and Hippo signalling in metastasis. Nat Cell Biol 192(19):81–83. https://doi.org/10.1038/ncb3467

    Article  CAS  Google Scholar 

  174. Zhou W, Ye XL, Xu J et al (2017) The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal 10:81–83

    Article  Google Scholar 

  175. Ren S, Liu J, Feng Y et al (2019) Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1398-2

    Article  PubMed  PubMed Central  Google Scholar 

  176. Shan J, Zhang S, Wang Z et al (2016) Breast malignant phyllodes tumor with rare pelvic metastases and long-term overall survival: A case report and literature review. Medicine (United States). https://doi.org/10.1097/MD.0000000000004942

    Article  PubMed Central  Google Scholar 

  177. Osaku T, Ogata H, Magoshi S et al (2015) Metastatic nonpalpable invasive lobular breast carcinoma presenting as rectal stenosis: A case report. J Med Case Rep. https://doi.org/10.1186/s13256-015-0568-x

    Article  PubMed  PubMed Central  Google Scholar 

  178. Urade T, Oka S, Iimori S et al (2019) A resected case of gallbladder metastasis with symptoms of acute cholecystitis in multiple metastatic ductal carcinoma of the breast. Clin J Gastroenterol. https://doi.org/10.1007/s12328-018-0892-y

    Article  PubMed  Google Scholar 

  179. Chen B, Huang X, Wei W et al (2018) Abstract 520: circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Cancer Res. https://doi.org/10.1158/1538-7445.am2018-520

    Article  PubMed  PubMed Central  Google Scholar 

  180. Tang H, Huang X, Wang J et al (2019) CircKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol Cancer. https://doi.org/10.1186/s12943-019-0946-x

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yan N, Xu H, Zhang J et al (2017) Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget 8:95704–95718

    Article  PubMed  PubMed Central  Google Scholar 

  182. Maltser S, Cristian A, Silver JK et al (2017) A focused review of safety considerations in cancer rehabilitation. PM R 9:S415. https://doi.org/10.1016/J.PMRJ.2017.08.403

    Article  PubMed  PubMed Central  Google Scholar 

  183. Complications of Advanced (Metastatic) Breast Cancer. https://www.verywellhealth.com/complications-of-advanced-metastatic-breast-cancer-4159828. Accessed 30 Mar 2022

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Banerjee, S. Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis. Mol Biol Rep 50, 9601–9623 (2023). https://doi.org/10.1007/s11033-023-08852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08852-0

Keywords

Navigation