Skip to main content
Log in

Thyroid-stimulating hormone may participate in insulin resistance by activating toll-like receptor 4 in liver tissues of subclinical hypothyroid rats

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Thyroid-stimulating hormone (TSH) is an independent risk factor of and closely associated with metabolic disorders. In the present study, we explored the potential mechanism and adverse effects of TSH on insulin resistance in the liver of subclinical hypothyroidism models in vivo.

Methods

The mean glucose infusion rate (GIR), free fatty acids (FFAs), the homeostatic model assessment for insulin resistance (HOMA-IR), fasting plasma insulin (FINS), the TLR4 signal pathway and its intracellular negative regulator-toll-interacting protein (Tollip), and the modulators of insulin signaling were evaluated.

Results

Compared to the normal control group (NC group), the subclinical hypothyroidism rat group (SCH group) showed decreases in GIR and increases in FFAs, FINS, and HOMA-IR. The levels of TLR4 and of its downstream molecules like p-NF-κB, p-IRAK-1, IL-6 and TNF-α were evidently higher in the SCH group than in the NC group. Conversely, the level of Tollip was significantly lower in the SCH group than in the NC group. Compared to the NC group, the levels of phosphorylated IRS-1-Tyr and GLUT2 were decreased in the SCH group. Macrophage infiltration was higher in the SCH group than in the NC group.

Conclusion

TSH may participate in aggravating inflammation by increasing macrophage infiltration; furthermore, it may activate the TLR4-associated inflammatory signaling pathway, thus interfering with insulin signals in liver tissues. Targeting TSH may have therapeutic benefits against metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Abbreviations

CH:

hypothyroidism group

FBG:

Fasting blood glucose

FFAs:

Free fatty acids

FINS:

Fasting insulin

GIR:

Glucose infusion rate

GLUT2:

Glucose transporter 2

HOMA-IR:

Homeostatic model assessment for insulin resistance

IRS-1:

Insulin receptor substrate-1

NC:

Normal control group

p-IRAK:

Phosphorylated interleukin receptor-related kinase-1

p-NF-κB:

Phosphorylated nuclear factor kappa-B

SCH:

Subclinical hypothyroidism group

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

Tollip:

Toll-interacting protein

TSH:

Thyroid-stimulating hormone

TSHR:

Thyroid-stimulating hormone receptor

References

  1. Biondi B, Kahaly GJ, Robertson RP (2019) Thyroid dysfunction and diabetes Mellitus: two closely Associated Disorders. Endocr Rev 40:789–824. https://doi.org/10.1210/er.2018-00163

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhu Y, Xu F, Shen J et al (2019) Prevalence of thyroid dysfunction in older chinese patients with type 2 diabetes-A multicenter cross-sectional observational study across China. PLoS ONE 14:e0216151. https://doi.org/10.1371/journal.pone.0216151

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kocatürk E, Kar E, Küskü Kiraz Z, Alataş Ö (2020) Insulin resistance and pancreatic β cell dysfunction are associated with thyroid hormone functions: a cross-sectional hospital-based study in Turkey. Diabetes Metab Syndr 14:2147–2151. https://doi.org/10.1016/j.dsx.2020.11.008

    Article  PubMed  Google Scholar 

  4. Kim HK, Song J (2022) Hypothyroidism and diabetes-related dementia: focused on neuronal dysfunction, insulin resistance, and Dyslipidemia. Int J Mol Sci 23:2982. https://doi.org/10.3390/ijms23062982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ge Y, Yang Y, Jiang Y et al (2022) Oxidized pork induces hepatic steatosis by impairing thyroid hormone function in mice. Mol Nutr Food Res 66:e2100602. https://doi.org/10.1002/mnfr.202100602

    Article  CAS  PubMed  Google Scholar 

  6. Moreno-Navarrete JM, Moreno M, Ortega F et al (2017) TSHB mRNA is linked to cholesterol metabolism in adipose tissue. Faseb j 31:4482–4491. https://doi.org/10.1096/fj.201700161R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mavromati M, Jornayvaz FR (2021) Hypothyroidism-Associated Dyslipidemia: potential molecular Mechanisms leading to NAFLD. Int J Mol Sci 22:12797. https://doi.org/10.3390/ijms222312797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies T, Marians R, Latif R (2002) The TSH receptor reveals itself. J Clin Invest 110:161–164. https://doi.org/10.1172/jci16234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding X, Zhao Y, Zhu CY et al (2021) The association between subclinical hypothyroidism and metabolic syndrome: an update meta-analysis of observational studies. Endocr J 68:1043–1056. https://doi.org/10.1507/endocrj.EJ20-0796

    Article  CAS  PubMed  Google Scholar 

  11. Li RC, Zhang L, Luo H et al (2020) Subclinical hypothyroidism and anxiety may contribute to metabolic syndrome in Sichuan of China: a hospital-based population study. Sci Rep 10:2261. https://doi.org/10.1038/s41598-020-58973-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee MK, Kim YM, Sohn SY, Lee JH, Won YJ, Kim SH (2019) Evaluation of the relationship of subclinical hypothyroidism with metabolic syndrome and its components in adolescents: a population-based study. Endocrine 65:608–615. https://doi.org/10.1007/s12020-019-01942-9

    Article  CAS  PubMed  Google Scholar 

  13. Radetti G, Grugni G, Lupi F et al (2017) The relationship between hyperthyrotropinemia and metabolic and cardiovascular risk factors in a large group of overweight and obese children and adolescents. J Endocrinol Invest 40:1311–1319. https://doi.org/10.1007/s40618-017-0705-z

    Article  CAS  PubMed  Google Scholar 

  14. Gokosmanoglu F, Aksoy E, Onmez A, Ergenç H, Topkaya S (2020) Thyroid homeostasis after bariatric surgery in obese cases. Obes Surg 30:274–278. https://doi.org/10.1007/s11695-019-04151-5

    Article  PubMed  Google Scholar 

  15. La Vignera S, Condorelli R, Vicari E, Calogero AE (2012) Endothelial dysfunction and subclinical hypothyroidism: a brief review. J Endocrinol Invest 35:96–103. https://doi.org/10.3275/8190

    Article  CAS  PubMed  Google Scholar 

  16. Yang C, Lu M, Chen W et al (2019) Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 216:1182–1198. https://doi.org/10.1084/jem.20181473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Xue C, Xu Q et al (2019) Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond) 16:40. https://doi.org/10.1186/s12986-019-0359-2

    Article  CAS  PubMed  Google Scholar 

  18. Di Sessa A, Cembalo Sambiase Sanseverino N, De Simone RF et al (2023) Association between non-alcoholic fatty liver disease and subclinical hypothyroidism in children with obesity. J Endocrinol Invest 46:1835–1842. https://doi.org/10.1007/s40618-023-02041-3

    Article  CAS  PubMed  Google Scholar 

  19. Kwon H, Cho JH, Lee DY et al (2018) Association between thyroid hormone levels, body composition and insulin resistance in euthyroid subjects with normal thyroid ultrasound: the Kangbuk Samsung Health Study. Clin Endocrinol (Oxf) 89:649–655. https://doi.org/10.1111/cen.13823

    Article  CAS  PubMed  Google Scholar 

  20. Ambrosi B, Masserini B, Iorio L et al (2010) Relationship of thyroid function with body mass index and insulin-resistance in euthyroid obese subjects. J Endocrinol Invest 33:640–643. https://doi.org/10.1007/bf03346663

    Article  CAS  PubMed  Google Scholar 

  21. Tropeano A, Corica D, Curatola S et al (2023) The effect of obesity-related allostatic changes on cardio-metabolic risk in euthyroid children. J Endocrinol Invest 46:285–295. https://doi.org/10.1007/s40618-022-01899-z

    Article  CAS  PubMed  Google Scholar 

  22. Zhao W, Zeng H, Zhang X et al (2016) A high thyroid stimulating hormone level is associated with diabetic peripheral neuropathy in type 2 diabetes patients. Diabetes Res Clin Pract 115:122–129. https://doi.org/10.1016/j.diabres.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  23. Fan J, Pan Q, Gao Q, Li W, Xiao F, Guo L (2021) TSH Combined with TSHR Aggravates Diabetic Peripheral Neuropathy by Promoting Oxidative Stress and Apoptosis in Schwann Cells. Oxid Med Cell Longev 2021:2482453. https://doi.org/10.1155/2021/2482453

  24. Li B, Leung JCK, Chan LYY, Yiu WH, Tang SCW (2020) A global perspective on the crosstalk between saturated fatty acids and toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 77:101020. https://doi.org/10.1016/j.plipres.2019.101020

    Article  CAS  PubMed  Google Scholar 

  25. Bao S, Cao Y, Fan C et al (2014) Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol Nutr Food Res 58:677–686. https://doi.org/10.1002/mnfr.201300335

    Article  CAS  PubMed  Google Scholar 

  26. Kowalski EJA, Li L (2017) Toll-interacting protein in resolving and non-resolving inflammation. Front Immunol 8:511. https://doi.org/10.3389/fimmu.2017.00511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watts BA 3rd, Tamayo E, Sherwood ER, Good DW (2019) Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through induction of Tollip and negative regulation of IRAK-1. Am J Physiol Renal Physiol 317:F705–f719. https://doi.org/10.1152/ajprenal.00170.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller YI, Choi SH, Wiesner P, Bae YS (2012) The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 167:990–999. https://doi.org/10.1111/j.1476-5381.2012.02097.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen C, Ma W, Ding L, Li S, Dou X, Song Z (2018) The TLR4-IRE1α pathway activation contributes to palmitate-elicited lipotoxicity in hepatocytes. J Cell Mol Med 22:3572–3581. https://doi.org/10.1111/jcmm.13636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hancock ML, Meyer RC, Mistry M et al (2019) Insulin receptor associates with Promoters Genome-wide and regulates Gene expression. Cell 177:722–736e722. https://doi.org/10.1016/j.cell.2019.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang YJ, Zhao W, Zhu MY, Tang SS, Zhang H (2013) Thyroid-stimulating hormone induces the secretion of tumor necrosis factor-α from 3T3-L1 adipocytes via a protein kinase A-dependent pathway. Exp Clin Endocrinol Diabetes 121:488–493. https://doi.org/10.1055/s-0033-1347266

    Article  CAS  PubMed  Google Scholar 

  32. Moon MK, Kang GH, Kim HH et al (2016) Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression. Mol Cell Endocrinol 436:50–58. https://doi.org/10.1016/j.mce.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  33. Escobar-Morreale HF, Obregón MJ, Escobar del Rey F, Morreale de Escobar G (1995) Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest 96:2828–2838. https://doi.org/10.1172/jci118353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu L, Yu X, Teng W, Shan Z (2012) Treatment with levothyroxine in pregnant rats with subclinical hypothyroidism improves cell migration in the developing brain of the progeny. J Endocrinol Invest 35:490–496. https://doi.org/10.3275/7967

    Article  CAS  PubMed  Google Scholar 

  35. Liu D, Teng W, Shan Z et al (2010) The effect of maternal subclinical hypothyroidism during pregnancy on brain development in rat offspring. Thyroid 20:909–915. https://doi.org/10.1089/thy.2009.0036

    Article  CAS  PubMed  Google Scholar 

  36. Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561. https://doi.org/10.2337/db06-0133

    Article  CAS  PubMed  Google Scholar 

  37. Bianco AC, Anderson G, Forrest D et al (2014) American thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 24:88–168. https://doi.org/10.1089/thy.2013.0109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choi YM, Kim MK, Kwak MK, Kim D, Hong EG (2021) Association between thyroid hormones and insulin resistance indices based on the Korean National Health and Nutrition Examination Survey. Sci Rep 11:21738. https://doi.org/10.1038/s41598-021-01101-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geloneze B, Tambascia MA (2006) [Laboratorial evaluation and diagnosis of insulin resistance]. Arq Bras Endocrinol Metabol 50:208–215. https://doi.org/10.1590/s0004-27302006000200007

    Article  PubMed  Google Scholar 

  40. Korta P, Pocheć E (2019) Glycosylation of thyroid-stimulating hormone receptor. Endokrynol Pol 70:86–100. https://doi.org/10.5603/EP.a2018.0077

    Article  CAS  PubMed  Google Scholar 

  41. Williams GR (2011) Extrathyroidal expression of TSH receptor. Ann Endocrinol (Paris) 72:68–73. https://doi.org/10.1016/j.ando.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W, Tian LM, Han Y et al (2009) Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J Cell Mol Med 13:4636–4642. https://doi.org/10.1111/j.1582-4934.2008.00670.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Briet C, Suteau-Courant V, Munier M, Rodien P (2018) Thyrotropin receptor, still much to be learned from the patients. Best Pract Res Clin Endocrinol Metab 32:155–164. https://doi.org/10.1016/j.beem.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Wang L, Zhou L et al (2017) Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 446:70–80. https://doi.org/10.1016/j.mce.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  45. Ma S, Shao S, Yang C, Yao Z, Gao L, Chen W (2020) A preliminary study: proteomic analysis of exosomes derived from thyroid-stimulating hormone-stimulated HepG2 cells. J Endocrinol Invest 43:1229–1238. https://doi.org/10.1007/s40618-020-01210-y

    Article  CAS  PubMed  Google Scholar 

  46. Jia X, Wang B, Yao Q, Li Q, Zhang J (2018) Variations in CD14 gene are Associated with autoimmune thyroid Diseases in the Chinese Population. Front Endocrinol (Lausanne) 9:811. https://doi.org/10.3389/fendo.2018.00811

    Article  PubMed  Google Scholar 

  47. Peng S, Sun X, Wang X et al (2018) Myeloid related proteins are up-regulated in autoimmune thyroid diseases and activate toll-like receptor 4 and pro-inflammatory cytokines in vitro. Int Immunopharmacol 59:217–226. https://doi.org/10.1016/j.intimp.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  48. Capelluto DG (2012) Tollip: a multitasking protein in innate immunity and protein trafficking. Microbes Infect 14:140–147. https://doi.org/10.1016/j.micinf.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Goobie GC, Zhang Y (2021) Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. J Mol Med (Berl) 99:21–31. https://doi.org/10.1007/s00109-020-01999-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Medjaden Inc. for scientific editing of this manuscript.

Funding

This project was supported by the National Natural Science Foundation of China (grant no. 82000763) and the Tianjin Municipal Health Commission (grant no. KJ20009).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fengbo Li, Lijun Duan and Junfeng Li. Xia Jiang interpreted the data. The first draft of the manuscript was written by Suqing Bao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suqing Bao.

Ethics declarations

Ethics approval

All experimental procedures and animal use protocols were approved by the Animal Care and Use Committee of Nankai University and were in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Informed consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Li, F., Duan, L. et al. Thyroid-stimulating hormone may participate in insulin resistance by activating toll-like receptor 4 in liver tissues of subclinical hypothyroid rats. Mol Biol Rep 50, 10637–10650 (2023). https://doi.org/10.1007/s11033-023-08834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08834-2

Keywords

Navigation