Skip to main content
Log in

Could NCOA5 a novel candidate gene for multiple sclerosis susceptibility?

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Multiple sclerosis (MS) is an inflammatory immune-mediated demyelinating disease that causes a challenging and disabling condition. Environmental and genetic factors play a role in appearing the state of the disease. Recent studies have shown that nuclear cofactor genes may play a role in the pathogenesis of MS. NCOA5 is a nuclear receptor coactivator independent of AF2 that modulates ERa-mediated transcription. This gene is involved in the pathogenesis of diseases such as psoriasis, Behcet’s disease, and cancer.

Methods and results

We investigated the relationship between the rs2903908 polymorphism of the NCOA5 gene and MS among 157 unrelated MS patients and 160 healthy controls by RT-PCR. The frequencies of the CC, CT, and TT genotypes were 19.87%, 37.82%, and 42.31%, respectively, for the MS group and 5.63%, 43.75%, and 50.62%, respectively, for the control group. The CC genotype and the C allele were found to be significantly higher in the patient group (the p values were 0.0002 and 0.003, respectively).

Conclusions

The fact that the CC genotype was found to be significantly higher in the patient group compared to the control group (p = 0.0002) and that it had a statistically significantly higher OR value (OR, 95% CI = 4.16, 1.91–9.05) suggests that the C allele may recessively predispose to MS for this polymorphism. These results suggest for the first time that the NCOA5 gene may have an effect on the occurrence of MS through different molecular pathways, which are discussed in the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Detailed data on the findings of this study are obviously not available due to sensitivity and are available from the corresponding author upon reasonable request.

Abbreviations

CIA:

Coactivator Independent of AF2

CNS:

Central Nervous System

CSF:

Cerebrospinal Fluid

EAE:

Experimental Autoimmune Encephalomyelitis

EDSS:

Expanded Disability Status Scale

GWAS:

Genome-Wide Association Studies

HCC:

Hepatic Cell Carcinoma

HLA:

Human Leukocyte Antigen

IL-6:

Interleukin-6

IMSGC:

International Multiple Sclerosis Genetics Consortium

MHC:

Major Histocompatibility Complex

MS:

Multiple Sclerosis

MSSS:

Multiple Sclerosis Severity Scale

NCOA5:

The Nuclear Receptor Coactivator 5

NO:

Neuromyelitis Optica

NR1D2:

Nuclear Receptor Subfamily 1 Group D Member 2

RA:

Rheumatoid Arthritis

RORA:

Retinoic Acid Receptor-Associated Orphan Receptor Alpha

RT-PCR:

Real-Time Polymerase Chain Reaction

SNP:

Single Nucleotide Polymorphism

SPSS:

Statistical Package for the Social Sciences

T1D:

Type I Diabetes

T2D:

Type 2 Diabetes

TAGAP:

T Cell Activation RhoGTPase Activating Protein

TNF:

Tumor Necrosis Facto

TYK2:

Tyrosine Kinase 2

References

  1. Patsopoulos NA (2018) Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb Perspect Med 8(7):a028951. https://doi.org/10.1101/cshperspect.a028951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hendrickx DAE, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, Hol EM, Hamann J, Huitinga I (2017) Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front Immunol 21:1810–1825. https://doi.org/10.3389/fimmu.2017.01810

    Article  CAS  Google Scholar 

  3. Santos M, Pinto-Basto J, Rio ME, Sá MJ, Valença A, Sá A, Dinis J, Figueiredo J, Bigotte de Almeida L, Coelho I, Sawcer S, Setakis E, Compston A, Sequeiros J, Maciel P (2003) Whole genome screen for association with multiple sclerosis in portuguese patients. J Neuroimmunol 143(1–2):112–115. https://doi.org/10.1016/j.jneuroim.2003.08.023

    Article  CAS  PubMed  Google Scholar 

  4. Sadovnick AD (2012) Genetic background of multiple sclerosis. Autoimmun Rev 11(3):163–166. https://doi.org/10.1016/j.autrev.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  5. Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C (2022) Genetics of multiple sclerosis: lessons from polygenicity. Lancet Neurol 21(9):830–842. https://doi.org/10.1016/S1474-4422(22)00255-1

    Article  CAS  PubMed  Google Scholar 

  6. Bertrams J, Kuwert E, Liedtke U (1972) HL-A antigens and multiple sclerosis. Tissue Antigens 2:405–408

    Article  CAS  PubMed  Google Scholar 

  7. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A (2017) The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 18:76. https://doi.org/10.1186/s13059-017-1207-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barcellos LF, Sawcer S, Ramsay PP et al (2006) Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 15:2813–2824. https://doi.org/10.1093/hmg/ddl22

    Article  CAS  PubMed  Google Scholar 

  9. Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z et al (2019) Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 15(6):1008180–1008220. https://doi.org/10.1371/journal.pgen.1008737

    Article  Google Scholar 

  10. Patsopoulos NA, Bayer Pharma MS, Genetics Working Group, Esposito F et al (2011) Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 70(6):897–912. https://doi.org/10.1002/ana.22609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, Howson JM, Stevens H, McManus R, Wijmenga C, Heap GA, Dubois PC, Clayton DG, Hunt KA, van Heel DA, Todd JA (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359(26):2767–2777. https://doi.org/10.1056/NEJMoa0807917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. International Multiple Sclerosis Genetics Consortium (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365:eaav7188. https://doi.org/10.1126/science.aav7188

    Article  CAS  PubMed Central  Google Scholar 

  13. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE et al (2012) Identifcation of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 44(12):1341–1348. https://doi.org/10.1038/ng.2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu S, Chen Y, Sun XD, Li FJ, Shu QF, Liu XL et al (2014) Association between IL-6-174G/C polymorphism and risk of multiple sclerosis: a meta-analysis. Genet Test Mol Biomark 18:127–130. https://doi.org/10.1089/gtmb.2013.0387

    Article  CAS  Google Scholar 

  15. Schönrock LM, Gawlowski G, Brück W (2000) Interleukin-6 expression in human multiple sclerosis lesions. Neurosci Lett 294:45–48. https://doi.org/10.1016/S0304-3940(00)01543-3

    Article  PubMed  Google Scholar 

  16. Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M et al (2016) Nuclear receptor NR1H3 in familial multiple sclerosis. Neuron 1:948–954. https://doi.org/10.1016/j.neuron.2016.04.039

    Article  CAS  Google Scholar 

  17. Zervou MI, Goulielmos GN, Castro-Giner F, Boumpas DT, Tosca AD, Krueger-Krasagakis S (2011) A CD40 and an NCOA5 gene polymorphism confer susceptibility to psoriasis in a southern european population: a case–control study. Hum Immunol 72:761–765. https://doi.org/10.1016/j.humimm.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  18. Eftekharian MM, Noroozi R, Sayad A, Sarrafzadeh S, Toghi M, Azimi T et al (2016) RAR-related orphan receptor A (RORA): a new susceptibility gene for multiple sclerosis. Neurol Sci 15:259–262. https://doi.org/10.1016/j.jns.2016.08.045

    Article  CAS  Google Scholar 

  19. Rustemoglu A, Inal EE, Inanir A, Ekinci D, Gul U, Yigit S et al (2017) Clinical significance of NCOA5 gene rs2903908 polymorphism in Behçet’s disease. EXCLI j 16:609–617. https://doi.org/10.17179/excli2017-189

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gao S, Zhang Y, Yang C, Perez GI, Xiao H (2019) NCOA5 haplo-insufficiency results in male mouse infertility through increased IL-6 expression in the epididymis. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-52105-9

    Article  CAS  Google Scholar 

  21. Sheremata W, Tornes L (2013) Multiple sclerosis and the spinal cord. Neurol Clin 31:55–77. https://doi.org/10.1148/radiology.195.3.7754002

    Article  PubMed  Google Scholar 

  22. Gallien P, Nicolas B, Robineau S, Pétrilli S, Houedakor J, Durufle A (2007) Physical training and multiple sclerosis. Ann Phys Rehabil Med 50(6):e373–e376. https://doi.org/10.1016/j.annrmp.2007.04.004

    Article  Google Scholar 

  23. Akpınar Z, Gündüz ZB (2011) Multipl Skleroz ve Kognitif Bozulma. Selçuk Tıp Derg 28:75–79

    Google Scholar 

  24. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC (2003) Canadian collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A 100:12877–12882. https://doi.org/10.1073/pnas.1932604100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–139. https://doi.org/10.1007/s100720170011

    Article  CAS  PubMed  Google Scholar 

  26. International Multiple Sclerosis Genetics Consortium (2019) A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat Commun 10(1):2236. https://doi.org/10.1038/s41467-019-09773-y

    Article  CAS  Google Scholar 

  27. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, Lavant E, Louey A, Moonsamy P, Type 1 Diabetes Genetics Consortium (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. J Diabetes 57:1084–1092. https://doi.org/10.2337/db07-1331

    Article  CAS  Google Scholar 

  28. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S et al (2015) Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47:1085–1090. https://doi.org/10.1038/ng.3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langefeld CD, Ainsworth HC, Graham DS, Kelly JA, Comeau ME, Marion MC et al (2017) Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms16021

    Article  CAS  Google Scholar 

  30. Dhar D, Seki E, Karin M (2014) NCOA5, IL-6, type 2 diabetes, and HCC: the deadly quartet. Cell Metab 19:6–7. https://doi.org/10.1038/ncomms16021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao S, Li A, Liu F, Chen F, Williams M, Zhang C, Kelley Z, Wu CL, Luo R, Xiao H (2013) NCOA5 haploinsufficiency results in glucose intolerance and subsequent hepatocellular carcinoma. Cancer Cell 24:725–737. https://doi.org/10.1016/j.ccr.2013.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stampanoni Bassi M, Iezzi E, Drulovic J, Pekmezovic T, Gilio L, Furlan R, Finardi A, Marfia GA, Sica F, Centonze D, Buttari F (2020) IL-6 in the cerebrospinal fluid signals Disease Activity in multiple sclerosis. Front Cell Neurosci 23:120–127. https://doi.org/10.3389/fncel.2020.00120

    Article  CAS  Google Scholar 

  33. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP et al (2008) Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 40:1216–1223. https://doi.org/10.1038/ng.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Liu F, Gao S, Reske J, Li A, Wu CL, Yang C, Chen F, Luo R, Xiao H (2017) A single non-synonymous NCOA5 variation in type 2 diabetic patients with hepatocellular carcinoma impairs the function of NCOA5 in cell cycle regulation. Cancer Let 10:152–161. https://doi.org/10.1016/j.canlet.2017.01.028

    Article  CAS  Google Scholar 

  35. Sayad A, Salmani T, Hemmesi MK, Ganji M, Ghafouri-Fard S, Hatami M, Soudyab M, Taheri M (2018) Down-regulation of RORA gene expression in the blood of multiple sclerosis patients. Hum Antibodies 26:219–224. https://doi.org/10.3233/hab-180341

    Article  CAS  PubMed  Google Scholar 

  36. 3Janssens K, Slaets H, Hellings N (2015) Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis Ann. N Y Acad Sci 1351:52–60. https://doi.org/10.1111/nyas.12821

  37. Gobel K, Ruck T, Meuth SG (2018) Cytokine signaling in multiple sclerosis: lost in translation. Mult Scler 24:432–439. https://doi.org/10.1177/1352458518763094

    Article  CAS  PubMed  Google Scholar 

  38. Koptan DMT, Rasheed Bahgat DM, Abdelrasool AA, Allam RSHM, Elgengehy FT, Abdel Baki NM, Medhat BM (2022) Analysis of nuclear receptor coactivator 5 (NCOA5) Messenger RNA expression and rs2903908 single nucleotide polymorphism of NCOA5 in an egyptian cohort with Behçet’s Disease: a single-center case-control study. Ocul Immunol Inflamm 30(6):1436–1446

    Article  CAS  PubMed  Google Scholar 

  39. Sarachana T, Hu VW (2013) Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism. Mol Autism 4(1):39. https://doi.org/10.1186/2040-2392-4-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ayatollahi SA, Ghafouri-Fard S, Taheri M, Noroozi R (2020) The efficacy of interferon-beta therapy in multiple sclerosis patients: investigation of the RORA gene as a predictive biomarker. J Pharmacogenomics 20:271–276. https://doi.org/10.1038/s41397-019-0114-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Tokat Gaziosmanpasa University Scientific Research Projects Commission. (Project No: 2015/67).

We gracefully thank the patients and the medical staff of the Tokat Gaziosmanpasa University Research Hospital for their support and contribution to the study.

Funding

This study was supported by Tokat Gaziosmanpasa University Scientific Research Projects Commission [Project No: 2015/67].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aydin Rustemoglu, Sema Atasever, Betul Cevik and Husniye Rustemoglu; data analysis, evaluation and article writing were performed by Husniye Rustemoglu, Erdem Arslan, Ahmet Bulent Turhan, Filiz Taspinar and Aydin Rustemoglu. The first draft of the manuscript was written by Husniye Rustemoglu and Erdem Arslan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aydin Rustemoglu.

Ethics declarations

Conflict of interest

The authors declare no competing interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was started after the approval of Tokat Gaziosmanpaşa University Faculty of Medicine Ethics Committee (15-KAEK-016).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors confirm that the MS patients and control subjects included in the study gave voluntary consent for the publication of study data and clinical data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustemoglu, H., Arslan, E., Atasever, S. et al. Could NCOA5 a novel candidate gene for multiple sclerosis susceptibility?. Mol Biol Rep 50, 9335–9341 (2023). https://doi.org/10.1007/s11033-023-08830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08830-6

Keywords

Navigation