Skip to main content
Log in

LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3’ untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3’UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH.

Methods and results

Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3’UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796).

Conclusion

LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All relevant data of this study are available within the article and its Supplementary Information. The raw DNA sequence reads (BioProject accession number PRJNA662090) are available for download at https://www.ncbi.nlm.nih.gov/sra/PRJNA662090. Source data are provided with this paper.

References

  1. Akioyamen LE, Genest J, Chu A et al (2019) Risk factors for cardiovascular disease in heterozygous familial hypercholesterolemia: a systematic review and meta-analysis. J Clin Lipidol 13:15–30. https://doi.org/10.1016/j.jacl.2018.10.012

    Article  PubMed  Google Scholar 

  2. Abifadel M, Boileau C (2023) Genetic and molecular architecture of familial hypercholesterolemia. J Intern Med 293:144–165

    Article  CAS  PubMed  Google Scholar 

  3. Chen P, Chen X, Zhang S (2019) Current status of familial hypercholesterolemia in China: a need for patient FH registry systems. Front Physiol 10. https://doi.org/10.3389/fphys.2019.00280

  4. Sturm AC, Knowles JW, Gidding SS et al (2018) Clinical genetic testing for familial hypercholesterolemia. J Am Coll Cardiol 72:662–680. https://doi.org/10.1016/j.jacc.2018.05.044

    Article  PubMed  Google Scholar 

  5. Berberich AJ, Hegele RA (2019) The complex molecular genetics of familial hypercholesterolaemia. Nat Rev Cardiol 16:9–20. https://doi.org/10.1038/s41569-018-0052-6

    Article  CAS  PubMed  Google Scholar 

  6. Nordestgaard BG, Chapman MJ, Humphries SE et al (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the european atherosclerosis society. Eur Heart J 34:3478–90a. https://doi.org/10.1093/eurheartj/eht273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pirazzi C, Håkansson L, Gustafsson C et al (2019) < p > high prevalence of genetic determined familial hypercholesterolemia in premature coronary artery disease. Appl Clin Genet Volume 12:71–78. https://doi.org/10.2147/TACG.S202942

    Article  CAS  Google Scholar 

  8. Chora JR, Medeiros AM, Alves AC, Bourbon M (2018) Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet Sci 20:591–598. https://doi.org/10.1038/gim.2017.151

    Article  CAS  Google Scholar 

  9. Steri M, Idda ML, Whalen MB, Orrù V (2018) Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev RNA 9:1–20. https://doi.org/10.1002/wrna.1474

    Article  CAS  Google Scholar 

  10. Heshmatzad K, Naderi N, Maleki M et al (2023) Role of non-coding variants in cardiovascular disease. J Cell Mol Med 27:1621–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rojano E, Seoane P, Ranea JAG, Perkins JR (2019) Regulatory variants: from detection to predicting impact. Brief Bioinform 20:1639–1654. https://doi.org/10.1093/BIB/BBY039

    Article  CAS  PubMed  Google Scholar 

  12. de Araújo JNG, de Oliveira VF, Borges JB et al (2022) In silico analysis of upstream variants in brazilian patients with familial hypercholesterolemia. Gene 849:146908. https://doi.org/10.1016/j.gene.2022.146908

    Article  CAS  PubMed  Google Scholar 

  13. Zhou S, Jin J, Wang J et al (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R (2017) SNPs in microRNA target sites and their potential role in human disease. Open Biol 7. https://doi.org/10.1098/rsob.170019

  15. Bruno AE, Li L, Kalabus JL et al (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC Genomics 13:44. https://doi.org/10.1186/1471-2164-13-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Zyl T, Jerling JC, Conradie KR, Feskens EJ (2014) Common and rare single nucleotide polymorphisms in the LDLR gene are present in a black south african population and associate with low-density lipoprotein cholesterol levels. J Hum Genet 59:88–94. https://doi.org/10.1038/jhg.2013.123

    Article  CAS  PubMed  Google Scholar 

  17. Zambrano T, Hirata MH, Cerda Á et al (2015) Impact of 3’UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in brazilian subjects: a pilot study. Int J Clin Exp Med 8:5978–5988

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Los B, Borges JB, Oliveira VF et al (2021) Functional analysis of PCSK9 3′UTR variants and mRNA–miRNA interactions in patients with familial hypercholesterolemia. Epigenomics 13:779–791. https://doi.org/10.2217/epi-2020-0462

    Article  CAS  PubMed  Google Scholar 

  19. Decourt C, Janin A, Moindrot M et al (2020) PCSK9 post-transcriptional regulation: role of a 3′UTR microRNA-binding site variant in linkage disequilibrium with c.1420G. Atherosclerosis 314:63–70. https://doi.org/10.1016/j.atherosclerosis.2020.10.010

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Campo FM, De Castro-Orós I, Noriega A et al (2017) Functional analysis of new 3′ untranslated regions genetic variants in genes associated with genetic hypercholesterolemias. J Clin Lipidol 11:532–542. https://doi.org/10.1016/j.jacl.2017.02.004

    Article  PubMed  Google Scholar 

  21. Faludi A, Izar M, Saraiva J, DA DIRETRIZ BRASILEIRA DE DISLIPIDEMIAS E PREVENÇÃO DA ATEROSCLEROSE – 2017 (2017) ATUALIZAÇÃO. Arq Bras Cardiol 109:. https://doi.org/10.5935/abc.20170121

  22. World Health Organization. WHO (1998) Human Genetics Programme. Familial Hypercholesterolaemia (FH). Report of a second WHO Consultation. Geneva

  23. Borges JB, de Oliveira VF, Ferreira GM et al (2021) Genomics, epigenomics and pharmacogenomics of familial hypercholesterolemia (FHBGEP): a study protocol. Res Social Administrative Pharm 17:1347–1355. https://doi.org/10.1016/j.sapharm.2020.10.007

    Article  Google Scholar 

  24. Borges JB, Oliveira VF, Dagli-Hernandez C et al (2023) Identification of pathogenic variants in the brazilian cohort with familial hypercholesterolemia using exon-targeted gene sequencing. Gene 875:147501. https://doi.org/10.1016/j.gene.2023.147501

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Sci 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  Google Scholar 

  27. Liu C, Zhang F, Li T et al (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13. https://doi.org/10.1186/1471-2164-13-661

  28. Barenboim M, Zoltick BJ, Guo Y, Weinberger DR (2010) MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat 31:1223–1232. https://doi.org/10.1002/humu.21349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun H, Nicoloso MS, Bhattacharyya A et al (2008) In silico prediction of target SNPs affecting miR-mRNA interaction. In: 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops. IEEE, pp 211–214

  30. Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42:86–91. https://doi.org/10.1093/nar/gkt1028

    Article  CAS  Google Scholar 

  31. Moldovan V, Banescu C, Dobreanu M (2020) Molecular diagnosis methods in familial hypercholesterolemia. Anatol J Cardiol 23:120–127. https://doi.org/10.14744/ANATOLJCARDIOL.2019.95038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun H, Yu G (2019) New insights into the pathogenicity of non-synonymous variants through multi-level analysis. Sci Rep 9:1667. https://doi.org/10.1038/s41598-018-38189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lorenzo A, da De, Silva JDL, James CE et al (2017) Clinical, anthropometric and biochemical characteristics of patients with or without genetically confirmed familial hypercholesterolemia. Arq Bras Cardiol 110:119–123. https://doi.org/10.5935/abc.20180005

    Article  CAS  Google Scholar 

  34. Rodríguez-Arroyo G, Paradisi I, Vívenes-Lugo M et al (2016) Polimorfismos de los genes LEP, LDLR, APOA4 y sus relaciones con el sobrepeso, la obesidad y el riesgo de enfermedades crónicas en adultos del estado Sucre. Venezuela Biomed 36:78–90. https://doi.org/10.7705/biomedica.v36i1.2702

    Article  Google Scholar 

  35. Orang AV, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:. https://doi.org/10.1155/2014/970607

  36. Lewis BP, Shih I, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798. https://doi.org/10.1016/S0092-8674(03)01018-3

    Article  CAS  PubMed  Google Scholar 

  37. Xue Y, Yin P, Li G, Zhong D (2018) Genome-wide integration study of circulating miRNAs and peripheral whole-blood mRNAs of male Acute Ischemic Stroke Patients. Neuroscience 380:27–37. https://doi.org/10.1016/j.neuroscience.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  38. Raitoharju E, Seppälä I, Oksala N et al (2014) Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome. The cardiovascular risk in Young Finns Study. Mol Cell Endocrinol 391:41–49. https://doi.org/10.1016/j.mce.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  39. Mangravite LM, Medina MW, Cui J et al (2010) Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol 30:1485–1492. https://doi.org/10.1161/ATVBAHA.110.203273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carr G, Barrese V, Stott JB et al (2016) MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc Res 112:581–589. https://doi.org/10.1093/cvr/cvw177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou Y, Liu W, Zhang J, Xiang D (2016) MiR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol Med Rep 14:1033–1039. https://doi.org/10.3892/mmr.2016.5309

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Li Y, Li G, Lu H (2020) Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis. Mol Med Rep 22:1868–1882. https://doi.org/10.3892/mmr.2020.11281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paquette M, Bernard S, Ruel I et al (2019) Diabetes is associated with an increased risk of cardiovascular disease in patients with familial hypercholesterolemia. J Clin Lipidol 13:123–128. https://doi.org/10.1016/J.JACL.2018.09.008

    Article  PubMed  Google Scholar 

  44. Sepramaniam S, Tan JR, Tan KS et al (2014) Circulating MicroRNAs as biomarkers of acute stroke. Int J Mol Sci 15:1418–1432. https://doi.org/10.3390/ijms15011418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S et al (2018) eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 21:711–724. https://doi.org/10.1007/s10456-018-9620-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu S, Ilyas I, Little PJ et al (2021) Endothelial dysfunction in atherosclerotic Cardiovascular Diseases and Beyond: from mechanism to Pharmacotherapies. Pharmacol Rev 73:924–967. https://doi.org/10.1124/PHARMREV.120.000096

    Article  CAS  PubMed  Google Scholar 

  47. Sun Y, Zhang X, Gao H et al (2019) Expression of microRNA-514a-5p and its biological function in experimental pulmonary thromboembolism. Am J Transl Res 11:5514–5530

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuniholm MH, Liang H, Anastos K et al (2017) Association of a 3′ untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4 + levels in HIV/hepatitis C virus coinfected women. AIDS 31:2483–2492. https://doi.org/10.1097/QAD.0000000000001648

    Article  CAS  PubMed  Google Scholar 

  49. Rosenson RS, Hegele RA, Koenig W (2019) Cholesterol-lowering agents PCSK9 inhibitors today and tomorrow. Circ Res 124:364–385

    Article  CAS  PubMed  Google Scholar 

  50. Gibson G (2012) Rare and common variants: twenty arguments. Nature Reviews Genetics 2012 13:2 13:135–145. https://doi.org/10.1038/nrg3118

Download references

Acknowledgements

The authors thank Adriana Garofalo, Cristina Moreno Fajardo and other colleagues at Laboratory of Molecular Research in Cardiology and Dyslipidemia Division of the Institute of Cardiology Dante Pazzanese for technical support and assistance in patient selection and data collection. RCCF, RHB, CDH and VFO, are grateful to Sao Paulo Research Foundation (FAPESP) Research Fellowship Program, Brazil. ESRM, ADL, RDCH and MHH are grateful to National Council for Scientific and Technological Development (CNPq) Research Fellowship Program, Brazil.

Funding

This study is funded by Sao Paulo Research Foundation (FAPESP, # 2016/12899-6), National Council for Scientific and Technological Development (CNPq, # 447120/2014-0), and Coordination of Superior Level Staff Improvement (CAPES, # code001), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

MHH, RCCF, RHB and RDCH conceived and designed the study. RMG and AAF conducted the selection, clinical evaluation and follow-up of FH patients. RCCF, CDH, ESRM, GMB and VNS acquired and analyzed clinical data. JBB and VFO performed DNA sequencing and bioinformatics data analysis. RCCF performed in silico studies and data analysis and interpretation. RCCF, RHB and ADL performed the statistical analysis. RCCF and RHB drafted the manuscript. MHH, RDCH, ADL and VNS critically reviewed the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Mario Hiroyuki Hirata.

Ethics declarations

Competing interests

The authors have no relevant financial and non-financial interests to disclose.

Ethics approval

The study protocol was approved by Local Ethics Committees (CAAE 24618713.0.0000.5462, 24618713.0.1001.5462, 24618713.0.3001.0067 and 24618713.0.2001.5292) and conducted according to good clinical practices and the Declaration of Helsinki guidelines (as revised in 2013).

Consent to participate

Informed consent was collected from all subjects who participated in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, R.C.C., Bortolin, R.H., Borges, J.B. et al. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach. Mol Biol Rep 50, 9165–9177 (2023). https://doi.org/10.1007/s11033-023-08784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08784-9

Keywords

Navigation