Skip to main content

Advertisement

Log in

Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Mattiuzzi C, Lippi G (2019) Current cancer epidemiology. J Epidemiol global health 9(4):217

    Article  Google Scholar 

  2. Rabiee F, Eghbalifard N, Fathi M, Rajabi H, Riazi SS (2023) Evaluation of the potential of the MicroRNAs to predict chemotherapy resistance in breast cancer patients: a systemic review with meta-analysis. Int J Sci Res Dent Med Sci 5(3):135–140.

    CAS  Google Scholar 

  3. Kumar M, Eshwaraiah CB, KP A, Rudrappa SM (2023) Correlation of tumor-infiltrating lymphocytes with tumor staging and grading in breast carcinomas: a retrospective study. Int J Sci Res Dent Med Sci 5(1):16–20.

    Google Scholar 

  4. Guo W, Chen W, Yu W, Huang W, Deng W (2013) Small interfering RNA-based molecular therapy of cancers. Chin J cancer 32(9):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW (2021) RNA-based therapies: a cog in the wheel of lung cancer defense. Mol Cancer 20(1):1–24

    Article  Google Scholar 

  6. Lee SJ, Kim MJ, Kwon IC, Roberts TM (2016) Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 104:2–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roscigno G, Scognamiglio I, Ingenito F, Chianese RV, Palma F, Chan A, Condorelli G (2020) Modulating the crosstalk between the tumor and the microenvironment using SiRNA: a flexible strategy for breast cancer treatment. Cancers 12(12):3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hattab D, Gazzali AM, Bakhtiar A (2021) Clinical advances of siRNA-based nanotherapeutics for cancer treatment. Pharmaceutics 13(7):1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salehi Kahrizsangi F, Mehrafar N, Pezhman Ghadami F, Rabiee F, Shariati Y (2022) Evaluation of the clinical outcome of nab-paclitaxel on multiple primary malignancies: a systematic review and meta-analysis. Int J Sci Res Dent Med Sci 4(4):183–190.

    Google Scholar 

  10. Cuciniello R, Filosa S, Crispi S (2021) Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics. J Experimental Clin Cancer Res 40(1):1–9

    Google Scholar 

  11. Narasipura EA, VanKeulen-Miller R, Ma Y, Fenton OS (2023) Ongoing clinical trials of nonviral siRNA therapeutics. Bioconjug Chem 34(7):1177–1197

    Article  CAS  PubMed  Google Scholar 

  12. Rahmani S, Rikhtechi P, Rasaneh S, Sheikholislam Z, Shahhosseini S (2017) Development of DOTA-Rituximab to be labeled with 90Y for Radioimmunotherapy of B-cell Non-Hodgkin Lymphoma. Iran J Pharm Res 16(2):619

    PubMed  PubMed Central  Google Scholar 

  13. Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mirzaei S, Gholami MH, Ang HL, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Delfi M, Khan H, Ashrafizadeh M, Sethi G (2021) Pre-clinical and clinical applications of small interfering RNAs (siRNA) and co-delivery systems for pancreatic cancer therapy. Cells 10(12):3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44(14):6518–6548

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jain D, Prajapati SK, Jain A, Singhal R (2023) Nano-formulated siRNA-based therapeutic approaches for cancer therapy. Nano Trends 1:100006

    Article  Google Scholar 

  17. Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB (2021) The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol 189:114432

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y, Hong J, Zheng S, Ding Y, Guo S, Zhang H, Zhang X, Du Q, Liang Z (2011) Elimination pathways of systemically delivered siRNA. Mol Ther 19(2):381–385

    Article  CAS  PubMed  Google Scholar 

  19. Keshavarz M, Asadi MH (2022) LncRNA ES3 is upregulated in High-Grade CRC and its expression is elevated along with increasing tumor size. J Genetic Resour 8(1):7–15

    Google Scholar 

  20. Wang J, Lu Z, Wientjes MG, Au JL (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12:492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedrich M, Aigner A (2022) Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs 36(5):549–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hashemi A, Bigdeli R, Shahnazari M, Oruji F, Fattahi S, Panahnejad E, Ghadri A, Movahedi-Asl E, Mahdavi-Ourtakand M, Asgary V, Baghbani-Arani F (2021) Evaluation of inflammasome activation in peripheral blood mononuclear cells of hemodialysis treated patients with glomerulonephritis. Iran J Pharm Res 20(3):609

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20(3):513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R (2016) Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobiosci 15(8):849–863

    Article  Google Scholar 

  26. Kozani PS, Shabani S (2021) Adverse events and Side Effects of chimeric Antigen receptor (CAR) T cell therapy in patients with hematologic malignancies. Trends in Medical Sciences 1(1):e116301

    Google Scholar 

  27. Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J (2021) Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv Sci 8(14):2100540

    Article  CAS  Google Scholar 

  28. Sarisozen C, Salzano G, Torchilin VP (2015) Recent advances in siRNA delivery. Biomol concepts 6(5–6):321–341

    Article  CAS  PubMed  Google Scholar 

  29. Gao K, Huang L (2009) Nonviral methods for siRNA delivery. Mol Pharm 6(3):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slade N (2001) Viral vectors in gene therapy. Periodicum Biologorum 103(2):139–144

    CAS  Google Scholar 

  31. Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood The Journal of the American Society of Hematology 122(1):23–36

    CAS  Google Scholar 

  32. Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EE, Rahman MH, Cavalu S (2022) Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes 13(8):1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taha EA, Lee J, Hotta A (2022) Delivery of CRISPR-Cas tools for in vivo genome editing therapy: trends and challenges. J Controlled Release 342:345–361

    Article  CAS  Google Scholar 

  34. Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK (2022) Gene therapy: comprehensive overview and therapeutic applications. Life Sci 294:120375

    Article  CAS  PubMed  Google Scholar 

  35. Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K (2022) Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 286:121510

    Article  PubMed  Google Scholar 

  36. Leong EW, Ge R (2022) Lipid nanoparticles as Delivery Vehicles for inhaled therapeutics. Biomedicines 10(9):2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalita T, Dezfouli SA, Pandey LM, Uludag H (2022) siRNA functionalized lipid nanoparticles (LNPs) in management of Diseases. Pharmaceutics 14(11):2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sufianov A, Beilerli A, Kudriashov V, Ilyasova T, Wenjie B, Beylerli O (2023) Advances in transdermal siRNAs delivery: a review of current research progress. Non-coding RNA Research 8(3):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohamadi N, Kazemi SM, Mohammadian M, Milani AT, Moradi Y, Yasemi M, Tabrizi MM, Shahmabadi HE, Khiyavi AA (2017) Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev 18(3):629

    PubMed  PubMed Central  Google Scholar 

  40. Oruji F, Baghbani Arani F, Mahdavi Ortakand M (2018) Evaluation of the gene expression of IL-1β and Casp-1 related to inflammation process in glomerulonephritis patients. J Anim Environ 10(3):477–482

    Google Scholar 

  41. Zhu H, Zheng J, Oh XY, Chan CY, Low BQ, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z (2023) Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS Nano 17(9):7953–7978

    Article  CAS  PubMed  Google Scholar 

  42. Niculescu AG, Bîrcă AC, Grumezescu AM (2021) New applications of lipid and polymer-based nanoparticles for nucleic acids delivery. Pharmaceutics 13(12):2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J (2023) Cationic polymers as transfection reagents for nucleic acid delivery. Pharmaceutics 15(5):1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jadid MF, Shademan B, Chavoshi R, Seyyedsani N, Aghaei E, Taheri E, Goleij P, Hajazimian S, Karamad V, Behroozi J, Sabet MN, Isazadeh A, Baradaran B (2021) Enhanced anticancer potency of hydroxytyrosol and curcumin by PLGA‐PAA nano‐encapsulation on PANC‐1 pancreatic cancer cell line. Environ Toxicol 36(6):1043–1051.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Sun B, Marcella C (2023) Evaluation of the diagnostic accuracy of superparamagnetic iron oxide nanoparticles on breast cancer: a systematic review and meta-analysis. Int J Sci Res Dent Med Sci 5(1):27–34.

    CAS  Google Scholar 

  46. Yadav K, Sahu KK, Gnanakani SP, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A (2023) Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 241:124582

    Article  CAS  PubMed  Google Scholar 

  47. Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A (2023) Recent advances in lung cancer therapy based on nanomaterials: a review. Curr Med Chem 30(3):335–355

    Article  CAS  PubMed  Google Scholar 

  48. Ebrahimifar M, Roudsari MH, Kazemi SM, Shahmabadi HE, Kanaani L, Alavi SA, Vasfi MI (2017) Enhancing effects of curcumin on cytotoxicity of paclitaxel, methotrexate and vincristine in gastric cancer cells. Asian Pac J Cancer Prev 18(1):65

    PubMed  PubMed Central  Google Scholar 

  49. Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4(9):872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Subhan MA, Torchilin VP (2020) siRNA based drug design, quality, delivery and clinical translation. Nanomed: Nanotechnol Biol Med 29:102239

    Article  CAS  Google Scholar 

  51. Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP (2012) Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 5(11):1177–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mohamed RJ, Aldulaimi A, Aowda SA (2022) Synthesized of new alkaloid compounds and study their anticancer activity. AIP Conf Proc 2660(1):1.

    Google Scholar 

  53. Stiltner J, McCandless K, Zahid M (2021) Cell-penetrating peptides: applications in tumor diagnosis and therapeutics. Pharmaceutics 13(6):890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery 20(2):101–124

    Article  CAS  PubMed  Google Scholar 

  55. Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E (2021) Carbon nanotubes: Smart drug/gene delivery carriers. Int J Nanomed 16:1681

    Article  Google Scholar 

  56. Eş I, Malfatti-Gasperini AA, de la Torre LG (2022) The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B 215:112476

    Article  Google Scholar 

  57. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):1–9

    Article  Google Scholar 

  58. Liu M, Wang L, Lo Y, Shiu SC, Kinghorn AB, Tanner JA (2022) Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells 11(1):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N (2021) Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol 9:748

    Article  Google Scholar 

  60. Tong Q, Qiu N, Ji J, Ye L, Zhai G (2020) Research progress in bioinspired drug delivery systems. Expert Opin Drug Deliv 17(9):1269–1288

    Article  CAS  PubMed  Google Scholar 

  61. Ståhl AL, Johansson K, Mossberg M, Kahn R, Karpman D (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30

    Article  PubMed  Google Scholar 

  62. Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S (2023) Emergence of small interfering RNA-Based gene drugs for various Diseases. ACS omega 8(23):20234–20250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jamali S, Nouhravesh M (2023) Evaluation of the clinical outcome of carbon nanoparticles on thyroid cancer: a systematic review and meta-analysis. Int J Sci Res Dent Med Sci 5(1):48-56.

    Google Scholar 

  64. Zarrintaj P, Ganjali MR, Salmankhani A, Mashhadzadeh AH, Munir MT, Salehnia F, Rezapour M, Habibzadeh S, Saeb MR (2023) Carboxymethylated polysaccharides in drug delivery. Tailor-Made Polysaccharides Drug Deliv 63–81.

  65. Jasinski D, Haque F, Binzel DW, Guo P (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11(2):1142–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geary C, Chworos A, Verzemnieks E, Voss NR, Jaeger L (2017) Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett 17(11):7095–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Guo B (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13(1):82–89

    Article  CAS  PubMed  Google Scholar 

  68. Shu D, Li H, Shu Y, Xiong G, Carson WE III, Haque F, Xu R, Guo P (2015) Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9(10):9731–9740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fathi M, Riazi SS, Pourdamghan N (2023) Triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell markers with anti-miRNA: a systematic review and meta-analysis. Int J Sci Res Dent Med Sci 5(2):96–101.

    CAS  Google Scholar 

  70. Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH (2022) Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Delivery 29(1):1959–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mosayebnia M, Rezaeianpour S, Rikhtechi P, Hajimahdi Z, Beiki D, Kobarfard F, Amini M, Abdi K, Shahhosseini S (2018) Novel and efficient method for solid phase synthesis of urea-containing peptides targeting prostate specific membrane antigen (PSMA) in comparison with current methods. Iran J Pharm Res 17(3):917

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ebrahimifar M, Nili-Ahmadabadi A, Akbarzadeh A, Shahemabadi HE, Hasanzadegan M, Moradi-Sardareh H, Madadizadeh H, Rezaee-Diyan J (2017) Preparation, characterization and cytotoxic effects of pegylated nanoliposomal containing carboplatin on ovarian cancer cell lines. Indian J Clin Biochem 32:230–234

    Article  CAS  PubMed  Google Scholar 

  73. Kaboli PJ, Shabani S, Sharma S, Nasr MP, Yamaguchi H, Hung MC (2022) Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J cancer Res 12(4):1671

    CAS  Google Scholar 

  74. Mehralizadeh H, Nazari A, Oruji F, Roostaie M, Hosseininozari G, Yazdani O, Esbati R, Roudini K (2023) Cytokine sustained delivery for cancer therapy; special focus on stem cell-and biomaterial-based delivery methods. Pathology-Research and Practice 247:154528

    Article  CAS  PubMed  Google Scholar 

  75. Subhan MA, Torchilin VP (2019) Efficient nanocarriers of siRNA therapeutics for cancer treatment. Translational Res 214:62–91

    Article  CAS  Google Scholar 

  76. Neeleman RA, Wensink D, Wagenmakers MA, Mijnhout GS, Friesema EC, Langendonk JG (2020) Diagnostic and therapeutic strategies for porphyrias. Neth J Med 78(4):149–160

    CAS  PubMed  Google Scholar 

  77. Frishberg Y, Deschenes G, Cochat P, Magen D, Groothoff J, Hulton SA, Harambat J, vant Hoff W, Hoppe B, Lieske* JC, McGregor TL (2019) Mp12-14 safety and efficacy study of Lumasiran, an investigational RNA interference (RNAI) therapeutic, in Adult and Pediatric patients with primary hyperoxaluria type 1 (PH1). J Urol 201(Supplement 4):e174

  78. Sheridan C (2019) PCSK9-gene-silencing, cholesterol-lowering drug impresses. Nat Biotechnol 37(12):1385–1388

    Article  CAS  PubMed  Google Scholar 

  79. Urits I, Swanson D, Swett MC, Patel A, Berardino K, Amgalan A, Berger AA, Kassem H, Kaye AD, Viswanath O (2020) A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther 9:301–315

    Article  PubMed  PubMed Central  Google Scholar 

  80. Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex AT (2022) siRNA therapeutics and its challenges: recent advances in effective delivery for cancer therapy. OpenNano 7:100063

    Article  Google Scholar 

  81. Smith ES, Whitty E, Yoo B, Moore A, Sempere LF, Medarova Z (2022) Clinical applications of short non-coding RNA-based therapies in the era of precision medicine. Cancers 14(6):1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10(1):1–8

    Article  Google Scholar 

  83. Sohrab SS, El-Kafrawy SA, Mirza Z, Kamal MA, Azhar EI (2018) Design and delivery of therapeutic siRNAs: application to MERS-coronavirus. Curr Pharm Design 24(1):62–77

    Article  CAS  Google Scholar 

  84. Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M (2022) Genetically Engineered viral vectors and Organic-Based non‐viral nanocarriers for drug delivery applications. Adv Healthc Mater 11(20):2201583

    Article  CAS  Google Scholar 

  85. Kamola PJ, Nakano Y, Takahashi T, Wilson PA, Ui-Tei K (2015) The siRNA non-seed region and its target sequences are auxiliary determinants of off-target effects. PLoS Comput Biol 11(12):e1004656

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ryther RC, Flynt AS, Phillips J, Patton JG (2005) siRNA therapeutics: big potential from small RNAs. Gene Ther 12(1):5–11

    Article  CAS  PubMed  Google Scholar 

  87. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184

    Article  CAS  PubMed  Google Scholar 

  88. Fakhr E, Zare F, Teimoori-Toolabi L (2016) Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 23(4):73–82

    Article  CAS  PubMed  Google Scholar 

  89. Janas MM, Schlegel MK, Harbison CE, Yilmaz VO, Jiang Y, Parmar R, Zlatev I, Castoreno A, Xu H, Shulga-Morskaya S, Rajeev KG (2018) Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun 9(1):723

    Article  PubMed  PubMed Central  Google Scholar 

  90. Song X, Wang X, Ma Y, Liang Z, Yang Z, Cao H (2017) Site-specific modification using the 2′-methoxyethyl group improves the specificity and activity of siRNAs. Mol Therapy-Nucleic Acids 9:242–250

    Article  CAS  Google Scholar 

  91. Godinho B, Khvorova A (2019) The era of RNA interference medicines: the clinical landscape of synthetic gene silencing drugs. Saúde & Tecnologia 21:5–17

    Google Scholar 

  92. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park RW, Kim IS (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29(12):1920–1930

    Article  CAS  PubMed  Google Scholar 

  93. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C, Lee SJ (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Therapy-Nucleic Acids 4:e252

    Article  CAS  Google Scholar 

  95. Suñé-Pou M, Limeres MJ, Moreno-Castro C, Hernández-Munain C, Suñé-Negre JM, Cuestas ML, Suñé C (2020) Innovative therapeutic and delivery approaches using nanotechnology to correct splicing defects underlying disease. Front Genet 11:731

    Article  PubMed  PubMed Central  Google Scholar 

  96. Larkins NG, Liu ID, Willis NS, Craig JC, Hodson EM (2020) Non-corticosteroid immunosuppressive medications for steroid‐sensitive nephrotic syndrome in children. Cochrane Database of Systematic Reviews 2020(4):CD002290

    PubMed Central  Google Scholar 

  97. Huang J, Xiao K (2022) Nanoparticles-based strategies to improve the delivery of therapeutic small interfering RNA in precision oncology. Pharmaceutics 14(8):1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62(6):650–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu Z, Ye J, Pei X, Sun L, Liu E, Wang J, Huang Y, Lee SJ, He H (2018) Improved method for synthesis of low molecular weight protamine–siRNA conjugate. Acta Pharm Sinica B 8(1):116–126

    Article  Google Scholar 

  100. Fathi N, Saadati A, Hasanzadeh M, Samiei M (2021) Chemical binding of pyrrolidinyl peptide nucleic acid (acpcPNA-T9) probe with AuNPs toward label‐free monitoring of miRNA‐21: a novel biosensing platform for biomedical analysis and POC diagnostics. J Mol Recognit 34(8):e2893

    Article  CAS  PubMed  Google Scholar 

  101. Fath MK, Naderi M, Hamzavi H, Ganji M, Shabani S, Khalesi B, Pourzardosht N, Hashemi ZS, Khalili S (2022) Molecular Mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J Trace Elem Med Biol 73:127044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Selvam C, Mutisya D, Prakash S, Ranganna K, Thilagavathi R (2017) Therapeutic potential of chemically modified si RNA: recent trends. Chem Biol Drug Des 90(5):665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fu Z, Li S, Han S, Shi C, Zhang Y (2022) Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Therapy 7(1):93

    Article  CAS  Google Scholar 

  104. Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A (2021) Cell-of-origin and genetic, epigenetic, and microenvironmental factors contribute to the intra-tumoral heterogeneity of pediatric intracranial ependymoma. Cancers 13(23):6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54(5):716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kumar K, Rani V, Mishra M, Chawla R (2022) New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Curr Res Pharmacol Drug Discovery 3:100103

    Article  Google Scholar 

  107. Shabani S, Moghadam MF, Gargari SL (2021) Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol 38(9):115

    Article  CAS  PubMed  Google Scholar 

  108. Ponomarev A, Gilazieva Z, Solovyeva V, Allegrucci C, Rizvanov A (2022) Intrinsic and extrinsic factors impacting cancer stemness and tumor progression. Cancers 14(4):970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44(12):2144–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E (2023) Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: current knowledge and future perspectives. Pharmaceutics 15(2):505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zong X, Nephew KP (2019) Ovarian cancer stem cells: role in metastasis and opportunity for therapeutic targeting. Cancers 11(7):934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Imai K, Taniguchi H (2022) Therapeutic siRNA targeting the cancer cell stemness regulator PRDI-BF1 and RIZ domain zinc finger protein 14. Proc Japan Acad Ser B 98(7):325–335

    Article  CAS  Google Scholar 

  113. Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK (2018) RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37:107–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong Y, Siegwart DJ, Anderson DG (2019) Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev 144:133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Albertsen CH, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB (2022) The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 188:114416

    Article  Google Scholar 

  116. Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, Mehmandoost N, Moazzen F, Mazraeh A, Marmari V, Ebrahimi M (2017) Molecular mechanisms and biological functions of siRNA. Int J biomedical Sci 13(2):48

    Article  Google Scholar 

  117. Zhao Y, Wang W, Guo S, Wang Y, Miao L, Xiong Y, Huang L (2016) PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat Commun 7(1):11822

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tatiparti K, Sau S, Kashaw SK, Iyer AK (2017) siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials 7(4):77

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zheng N, Luo X, Zhang Z, Wang A, Song W (2021) Cationic polyporphyrins as siRNA delivery vectors for photodynamic and gene synergistic anticancer therapy. ACS Appl Mater Interfaces 13(23):27513–27521

    Article  CAS  PubMed  Google Scholar 

  120. Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK (2020) Overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals 13(10):294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Plath K, Srivastava D, Alvarez-Buylla A, Tanaka EM, Kriegstein AR (2012) Stem cells in the land of the rising Sun: ISSCR 2012. Cell Stem Cell 11(5):607–614

    Article  CAS  PubMed  Google Scholar 

  122. Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V (2022) Encapsulation of miRNA and siRNA into nanomaterials for Cancer therapeutics. Pharmaceutics 14(8):1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MA, Guo W, Huang J, Wang Z, Kesharwani P (2023) Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer 22(1):1–22

    Article  Google Scholar 

  124. Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C (2021) Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID‐19 vaccines. Small Methods 5(9):2100402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Akbari.

Ethics declarations

Disclosure of potential conflicts of interest

The authors have no conflict of interest with anybody or any competing interests.

Research involving human participants and/or animals

None applicable.

Informed consent

None applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isazadeh, H., Oruji, F., Shabani, S. et al. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep 50, 9529–9543 (2023). https://doi.org/10.1007/s11033-023-08749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08749-y

Keywords

Navigation