Skip to main content

Advertisement

Log in

Sleep-associated insulin resistance promotes neurodegeneration

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lifestyle modification can lead to numerous health issues closely associated with sleep. Sleep deprivation and disturbances significantly affect inflammation, immunity, neurodegeneration, cognitive depletion, memory impairment, neuroplasticity, and insulin resistance. Sleep significantly impacts brain and memory formation, toxin excretion, hormonal function, metabolism, and motor and cognitive functions. Sleep restriction associated with insulin resistance affects these functions by interfering with the insulin signalling pathway, neurotransmission, inflammatory pathways, and plasticity of neurons. So, in this review, We discuss the evidence that suggests that neurodegeneration occurs via sleep and is associated with insulin resistance, along with the insulin signalling pathways involved in neurodegeneration and neuroplasticity, while exploring the role of hormones in these conditions.

Graphical Abstract

Highlights

  • Insulin resistance increases the accumulation of amyloid β, tau, and synuclein in neurons, leading to neurodegeneration.

  • The insulin signalling pathway has a potential role in sleep deprivation-induced insulin resistance.

  • Neurohormones that play a role in the sleep/wake cycle modulate insulin sensitivity, metabolism, and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated with the manuscript.

References

  1. Heyde I, Oster H (2022) Induction of internal circadian desynchrony by misaligning zeitgebers. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-022-05624-x

    Article  CAS  Google Scholar 

  2. Koch CE et al (2020) Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-16882-6

    Article  CAS  Google Scholar 

  3. Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P (2019) Local sleep. Sleep Med Rev 43:14–21. https://doi.org/10.1016/j.smrv.2018.10.001

    Article  PubMed  Google Scholar 

  4. Barbato G (2021) REM sleep: an unknown indicator of sleep quality. Int J Environ Res Public Health 18:24. https://doi.org/10.3390/ijerph182412976

    Article  Google Scholar 

  5. Borges CR, Poyares D, Piovezan R, Nitrini R, Brucki S (2019) “Alzheimer ’ s disease and sleep disturbances : a review,”. pp 815–824

  6. Gupta R et al (2020) Changes in sleep pattern and sleep quality during COVID-19 lockdown. Indian J Psychiatry 62(4):370–378. https://doi.org/10.4103/psychiatry.IndianJPsychiatry

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pinto J et al (2020) Sleep quality in times of Covid-19 pandemic. Sleep Med 74:81–85. https://doi.org/10.1016/j.sleep.2020.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lissak G (2018) Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study. Environ Res 2018(164):149–157. https://doi.org/10.1016/j.envres.2018.01.015

    Article  CAS  Google Scholar 

  9. Novozhilova M et al (2021) Features of age-related response to sleep deprivation: in vivo experimental studies. Aging 13:19108–19126. https://doi.org/10.18632/aging.203372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pimolsri C et al (2021) Objective sleep duration and timing predicts completion of in vitro fertilization cycle. J Assist Reprod Genet 38(10):2687–2696. https://doi.org/10.1007/s10815-021-02260-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bishir M et al (2020) Sleep deprivation and neurological disorders. Biomed Res Int. https://doi.org/10.1155/2020/5764017

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma Y, Liang L, Zheng F, Shi L, Zhong B, Xie W (2020) Association between sleep duration and cognitive decline. JAMA Netw Open 3(9):e2013573. https://doi.org/10.1001/jamanetworkopen.2020.13573

    Article  PubMed  PubMed Central  Google Scholar 

  13. Overberg J, Kalveram L, Keller T, Krude H, Kühnen P, Wiegand S (2022) Interactions between nocturnal melatonin secretion, metabolism, and sleeping behavior in adolescents with obesity. Int J Obes 46(5):1051–1058. https://doi.org/10.1038/s41366-022-01077-4

    Article  CAS  Google Scholar 

  14. Lamon S et al (2021) The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol Rep. https://doi.org/10.14814/phy2.14660

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahmed OG, Mahmoud GS, Samy SS, Sayed SA (2023) The protective effect of melatonin on chronic paradoxical sleep deprivation induced metabolic and memory deficit in rats. Int J Pathophysiol Pharmacol 15(3):56–74

    Google Scholar 

  16. Zhao H et al (2016) Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice. NeuroReport 27(12):916–922. https://doi.org/10.1097/WNR.0000000000000631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferraz-Bannitz R, Beraldo RA, Coelho PO, Moreira AC, Castro M, Foss-Freitas MC (2021) Circadian misalignment induced by chronic night shift work promotes endoplasmic reticulum stress activation impacting directly on human metabolism. Biology (Basel) 10(3):1–13. https://doi.org/10.3390/biology10030197

    Article  CAS  Google Scholar 

  18. Holth JK et al (2020) The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363(6429):880–884. https://doi.org/10.1126/science.aav2546.The

    Article  Google Scholar 

  19. Gottlieb E et al (2020) Regional neurodegenaration correlates with sleep-wake dysfunction after stroke. Sleep Res Soc 43(9):1–13

    Google Scholar 

  20. Feld GB et al (2016) Central nervous insulin signaling in sleep-associated memory formation and neuroendocrine regulation. Neuropsychopharmacology 41(6):1540–1550. https://doi.org/10.1038/npp.2015.312

    Article  PubMed  Google Scholar 

  21. Yamaguchi ST, Tomita J, Kume K (2022) Insulin signaling in clock neurons regulates sleep in Drosophila. Biochem Biophys Res Commun 591:44–49. https://doi.org/10.1016/j.bbrc.2021.12.100

    Article  CAS  PubMed  Google Scholar 

  22. Brzecka A et al (2020) Sleep disturbances and cognitive impairment in the course of type 2 diabetes-a possible link. Curr Neuropharmacol 19(1):78–91

    Article  Google Scholar 

  23. Sweeney EL, Jeromson S, Hamilton DL, Brooks NE, Walshe IH (2017) Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiol Rep 5(23):1–8. https://doi.org/10.14814/phy2.13498

    Article  CAS  Google Scholar 

  24. Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N (2020) Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms21165624

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramasubbu K, Rajeswari VD, Autophagy-related ATG (2022) Impairment of insulin signaling pathway PI3K / Akt / mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases : a perspective review Receptor for AGEs. Mol Cell Biochem. https://doi.org/10.1007/s11010-022-04587-x

    Article  PubMed  Google Scholar 

  26. Sondrup N et al (2022) Effects of sleep manipulation on markers of insulin sensitivity : a systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 62:101594. https://doi.org/10.1016/j.smrv.2022.101594

    Article  CAS  PubMed  Google Scholar 

  27. Reutrakul S, Sumritsopak R, Saetung S, Chanprasertyothin S, Anothaosintawee T (2017) The relationship between sleep and glucagon-like peptide 1 in patients with abnormal glucose tolerance. J Sleep Res. https://doi.org/10.1111/jsr.12552

    Article  PubMed  Google Scholar 

  28. Park J et al (2022) Daily injection of melatonin inhibits insulin resistance induced by chronic mealtime shift. Physiol Rep 10(6):1–9. https://doi.org/10.14814/phy2.15227

    Article  CAS  Google Scholar 

  29. Pignatelli J, De Sevilla MEF, Sperber J, Horrillo D, Medina-gomez G, Aleman IT (2022) Insulin-like growth factor i couples metabolism with circadian activity through hypothalamic orexin neurons. Intern J Mol Sci. https://doi.org/10.3390/ijms23094679

    Article  Google Scholar 

  30. Bruni O, Ferini-Strambi L, Giacomoni E, Pellegrino P (2021) Herbal remedies and their possible effect on the GABAergic system and sleep. Nutrients 13:1–13. https://doi.org/10.3390/nu130205301

    Article  Google Scholar 

  31. Yamada RG, Ueda HR (2020) Molecular mechanisms of REM sleep. Front Neurosci 13:1–15. https://doi.org/10.3389/fnins.2019.01402

    Article  Google Scholar 

  32. Sakai K, Crochet S (2003) A neural mechanism of sleep and wakefulness. Sleep Biol Rhythms 1:29–42

    Article  Google Scholar 

  33. Wang X, Bik A, De Groot ER, Luisa M, Benders MJNL, Dudink J (2023) Clinical neurophysiology feasibility of automated early postnatal sleep staging in extremely and very preterm neonates using dual-channel EEG. Clin Neurophysiol 146:55–64. https://doi.org/10.1016/j.clinph.2022.11.018

    Article  PubMed  Google Scholar 

  34. Chai Y et al (2020) Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-65086-x

    Article  CAS  Google Scholar 

  35. Chu C, Holst SC, Elmenhorst E, Foerges AL (2023) Total sleep deprivation increases brain age prediction reversibly in multi-site samples of young healthy adults. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0790-22.2023

    Article  PubMed  PubMed Central  Google Scholar 

  36. MacDonald KJ, Cote KA (2021) Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med. Rev. 59:101453. https://doi.org/10.1016/j.smrv.2021.101453

    Article  PubMed  Google Scholar 

  37. Eban-rothschild A, Appelbaum L, De Lecea L (2018) Neuronal mechanisms for sleep / wake regulation and modulatory drive. Nat Publ Gr 43(5):937–952. https://doi.org/10.1038/npp.2017.294

    Article  Google Scholar 

  38. Craig-Heller H, Ruby FN, Rolls A, Makam M, Colas D (2014) Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep. Behav Neurosci. 128(3):273–282. https://doi.org/10.1037/a0036689.Adaptive

    Article  Google Scholar 

  39. Helakari H et al (2022) Human NREM sleep promotes brain-wide vasomotor and respiratory pulsations. J Neurosci 42(12):2503–2515. https://doi.org/10.1523/JNEUROSCI.0934-21.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Riemann D, Krone LB, Wulff K, Nissen C (2020) Sleep, insomnia, and depression. Neuropsychopharmacology 45(1):74–89. https://doi.org/10.1038/s41386-019-0411-y

    Article  PubMed  Google Scholar 

  41. Li W, Yang G, Gan W (2017) REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci 20(3):427–437. https://doi.org/10.1038/nn.4479.REM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruni O, Ferini-Strambi L, Giacomoni E, Pellegrino P (2021) Herbal remedies and their possible effect on the gabaergic system and sleep. Nutrients 13(2):1–13. https://doi.org/10.3390/nu13020530

    Article  CAS  Google Scholar 

  43. Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T (2022) Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science. 375(6584):994–1000. https://doi.org/10.1126/science.abl6618

    Article  CAS  PubMed  Google Scholar 

  44. Nelson KL, Davis JE, Corbett CF (2022) Sleep quality: an evolutionary concept analysis. Nurs Forum 57(1):144–151. https://doi.org/10.1111/nuf.12659

    Article  PubMed  Google Scholar 

  45. Erion R, DiAngelo JR, Crocker A, Sehgal A (2012) Interaction between sleep and metabolism in Drosophila with altered octopamine signaling. J Biol Chem 287(39):32406–32414. https://doi.org/10.1074/jbc.M112.360875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benítez-king CG et al (2018) Circadian modulation of neuroplasticity by melatonin : a target in the treatment of depression. Br J Pharmacol 175:3200–3208. https://doi.org/10.1111/bph.14197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ukraintseva YV, Kovalzon VM (2016) Circadian regulation and its disorders in Parkinson’s disease patients. part 2: experimental models, alpha-synuclein, and melatonin. Hum Physiol 42(5):559–570. https://doi.org/10.1134/S0362119716050170

    Article  CAS  Google Scholar 

  48. Shen L, Wiley JF, Bei B (2021) Perceived daily sleep need and sleep debt in adolescents: associations with daily affect over school and vacation periods. Sleep 44(12):1–9. https://doi.org/10.1093/sleep/zsab190

    Article  Google Scholar 

  49. Salehinejad MA, Ghanavati E, Reinders J, Kuo F, Nitsche MA (2022) Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain. Neuroscience 1:1–33

    Google Scholar 

  50. Palagini L, Geoffroy PA, Riemann D (2022) Sleep markers in psychiatry: do insomnia and disturbed sleep play as markers of disrupted neuroplasticity in mood disorders? A pro- posed model. Curr Med Chem 22:5595–5605. https://doi.org/10.2174/0929867328666211214164907

    Article  CAS  Google Scholar 

  51. Broussard J, Brady MJ (2010) The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab 24(5):763–773. https://doi.org/10.1016/j.beem.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyhöfer S et al (2022) Sleep deprivation prevents counterregulatory adaptation to recurrent hypoglycaemia. Diabetologia 65:1212–1221. https://doi.org/10.1007/s00125-022-05702-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stoelzel CR, Cincotta AH (2020) Circadian-timed dopamine agonist treatment reverses high-fat diet-induced diabetogenic shift in ventromedial hypothalamic glucose sensing. Endocrinol Metab. https://doi.org/10.1002/edm2.139

    Article  Google Scholar 

  54. Oomura Y, Ono T, Ooyama H, Wayner MJ (1969) Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222(5190):282–284. https://doi.org/10.1038/222282a0

    Article  CAS  PubMed  Google Scholar 

  55. Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C, Chan O (2014) Hypothalamic glucose sensing : making ends meet. Front Syst Neurosci 8(December):1–13. https://doi.org/10.3389/fnsys.2014.00236

    Article  Google Scholar 

  56. Yoon NA, Diano S (2021) Hypothalamic glucose-sensing mechanisms. Diabetologia 64:985–993. https://doi.org/10.1007/s00125-021-05395-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. So-Ngern A, Chirakalwasan N, Saetung S, Chanprasertyothin S, Thakkinstian A, Reutrakul S (2019) Effects of two-week sleep extension on glucose metabolism in chronically sleep-deprived individuals. J Clin Sleep Med 15(5):711–8

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hashempour S, Ghorbani A, Khashayar A, Olfati H (2021) Association of sleep quality with insulin resistance in obese or overweight subjects. Sleep Sci 14:75–78. https://doi.org/10.5935/1984-0063.20200084

    Article  Google Scholar 

  59. Kontou TG, Sargent C, Roach GD (2022) A week of sleep restriction does not affect nighttime glucose concentration in healthy adult males when slow-wave sleep is maintained. Sensors. https://doi.org/10.3390/s22186962

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ness XKM, Strayer SM, Nahmod NG, Chang A, Buxton OM, Shearer GC (2019) Two nights of recovery sleep restores the dynamic lipemic response, but not the reduction of insulin sensitivity, induced by five nights of sleep restriction. Am J Physiol Regul Integr Comp Physiol 316:697–703. https://doi.org/10.1152/ajpregu.00336.2018

    Article  CAS  Google Scholar 

  61. Zheng P et al (2020) Evaluating the effects of different sleep supplement modes in attenuating metabolic consequences of night shift work using rat model. Nat Sci Sleep 12:1053–1065

    Article  PubMed  PubMed Central  Google Scholar 

  62. Andica C et al (2023) Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome. Neurobiol Dis 177:105990. https://doi.org/10.1016/j.nbd.2023.105990

    Article  CAS  PubMed  Google Scholar 

  63. Kim YK, Il-Nam K, Song J (2018) The glymphatic system in diabetes-induced dementia. Front Neurol 9:1–10. https://doi.org/10.3389/fneur.2018.00867

    Article  Google Scholar 

  64. Reddy OC, van der Werf YD (2020) The sleeping brain: Harnessing the power of the glymphatic system through lifestyle choices. Brain Sci 10(11):1–16. https://doi.org/10.3390/brainsci10110868

    Article  CAS  Google Scholar 

  65. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2019) The glymphatic system and waste clearance with brain aging: a review. Gerontology 65(2):106–119. https://doi.org/10.1159/000490349

    Article  PubMed  Google Scholar 

  66. Galli M, Hameed A, Żbikowski A, Zabielski P (2021) Aquaporins in insulin resistance and diabetes: more than channels! Redox Biol. https://doi.org/10.1016/j.redox.2021.102027

    Article  PubMed  PubMed Central  Google Scholar 

  67. Carroll EJ, Cole WS, Seeman ET, Breen CE (2019) Partial Sleep Deprivation Activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in Aged Adult Humans. Physiol Behav 176(3):139–148. https://doi.org/10.1016/j.bbi.2015.08.024.Partial

    Article  Google Scholar 

  68. Lee HK et al (2017) MTORC2 (Rictor) in Alzheimer’s disease and reversal of amyloid-β expression-induced insulin resistance and toxicity in rat primary cortical neurons. J Alzheimer’s Dis 56(3):1015–1036. https://doi.org/10.3233/JAD-161029

    Article  CAS  Google Scholar 

  69. Ya-Huang W et al (2018) Jiao-tai-wan up-regulates hypothalamic and peripheral circadian clock gene cryptochrome and activates PI3K/AKT signaling in partially sleep-deprived rats. Curr Med Sci 38(4):704–713. https://doi.org/10.1007/s11596-018-1934-x

    Article  CAS  Google Scholar 

  70. Cao Y et al (2021) Cardioprotective effect of stem-leaf saponins from panax notoginseng on mice with sleep deprivation by inhibiting abnormal autophagy through PI3K/Akt/mTOR pathway. Front Cardiovasc Med 8(September):1–11. https://doi.org/10.3389/fcvm.2021.694219

    Article  CAS  Google Scholar 

  71. Duan X, Pan Q, Guo L (2022) Chronic sleep deprivation impaired bone formation in growing rats and down-regulated PI3K/AKT signaling in bone tissues. Nat Sci Sleep 14:697–710. https://doi.org/10.2147/NSS.S351850

    Article  PubMed  PubMed Central  Google Scholar 

  72. Siddiqui N, Ali J, Parvez S, Zameer S, Kalam A, Akhtar M (2021) Neuropharmacology Linagliptin, a DPP-4 inhibitor, ameliorates A β (1–42) peptides induced neurodegeneration and brain insulin resistance ( BIR ) via insulin receptor substrate-1 ( IRS-1) in rat model of Alzheimer ’ s disease. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2021.108662Received

    Article  PubMed  Google Scholar 

  73. Bajaj P, Kaur G (2022) Acute sleep deprivation - induced anxiety and disruption of hypothalamic cell survival and plasticity : a mechanistic study of protection by butanol extract of Tinospora cordifolia. Neurochem Res 47(6):1692–1706. https://doi.org/10.1007/s11064-022-03562-8

    Article  CAS  PubMed  Google Scholar 

  74. Xue R, Wan Y, Sun X, Zhang X, Gao W, Wu W (2019) Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol 10:1–12. https://doi.org/10.3389/fimmu.2019.02546

    Article  CAS  Google Scholar 

  75. Zarneshan NS, Fakhri S, Khan H (2022) Targeting Akt_CREB_BDNF signaling pathway by ginsenosides in neurodegenerative diseases_ A mechanistic approach - ScienceDirect. Pharmacol Res 177:1

    Article  Google Scholar 

  76. Xing C, Zhang C, Wang W, Wu L, Xing C (2020) Sleep disturbance induces increased cholesterol level by NR1D1 mediated CYP7A1 inhibition. Front Genet 11:1–10. https://doi.org/10.3389/fgene.2020.610496

    Article  CAS  Google Scholar 

  77. Niu L et al (2021) Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer ’ s disease neuropathology. Brain Pathol. https://doi.org/10.1111/bpa.13028

    Article  PubMed  PubMed Central  Google Scholar 

  78. Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21(2):67–84. https://doi.org/10.1038/s41580-019-0179-2

    Article  CAS  PubMed  Google Scholar 

  79. Zhang F et al (2020) Amyloid β redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med 12:526. https://doi.org/10.1126/scitranslmed.aay6931.Amyloid

    Article  Google Scholar 

  80. Jouffe C et al (2022) Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci USA 119:10. https://doi.org/10.1073/pnas.2200083119

    Article  CAS  Google Scholar 

  81. Ding G et al (2021) Rev-erb in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature 592(7856):763–767. https://doi.org/10.1038/s41586-021-03358-w.Rev-erb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toledo M et al (2019) Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab 28(2):268–281. https://doi.org/10.1016/j.cmet.2018.05.023.Autophagy

    Article  Google Scholar 

  83. Zhao L, Liu Y, Wang X (2021) TNF-α promotes insulin resistance in obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 21(6):1–7. https://doi.org/10.3892/etm.2021.10000

    Article  CAS  Google Scholar 

  84. Singh T et al (2022) Does insufficient sleep increase the risk of developing insulin resistance: a systematic review. Cureus 14(3):1–8. https://doi.org/10.7759/cureus.23501

    Article  CAS  Google Scholar 

  85. Mani S, Sevanan M, Krishnamoorthy A, Sekar S (2021) A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurol Sci 42(11):4459–4469. https://doi.org/10.1007/s10072-021-05551-1

    Article  PubMed  Google Scholar 

  86. Korin B, Avraham S, Azulay-debby H, Farfara D, Rolls A (2020) “Short-term sleep deprivation in mice induces B cell migration to the brain compartment”, sleep Res. Soc. https://doi.org/10.1093/sleep/zsz222

    Article  Google Scholar 

  87. Schwarz J et al (2019) Mood impairment is stronger in young than in older adults after sleep deprivation. J. Sleep Res. 28:4. https://doi.org/10.1111/jsr.12801

    Article  Google Scholar 

  88. Min J et al (2022) Emotion downregulation targets interoceptive brain regions while emotion upregulation targets other affective brain regions. J Neurosci 42(14):2973–2985. https://doi.org/10.1523/JNEUROSCI.1865-21.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Vivo L, Bellesi M (2019) The role of sleep and wakefulness in myelin plasticity. Glia. https://doi.org/10.1002/glia.23667

    Article  PubMed  PubMed Central  Google Scholar 

  90. Naidoo N, Ferber M, Master M, Zhu Y, Pack AI (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28(26):6539–6548. https://doi.org/10.1523/JNEUROSCI.5685-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu Y, Masurat F, Preis J, Bringmann H (2018) Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Curr Biol 28(22):3610-3624.e8. https://doi.org/10.1016/j.cub.2018.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Naidoo N et al (2014) Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell 13(1):131–141. https://doi.org/10.1111/acel.12158

    Article  CAS  PubMed  Google Scholar 

  93. Cuddapah VA, Zhang LS, Sehgal A (2019) Regulation of the blood-brain barrier by circadian rhythms and sleep. Trends 42:500–510

    CAS  Google Scholar 

  94. Palomares J et al (2015) Water exchange across the blood-brain barrier in obstructive sleep apnea: an MRI diffusion-weighted pseudo-continuous arterial spin labeling study. J. neuroimaging 25(6):900–905. https://doi.org/10.1111/jon.12288

    Article  PubMed  PubMed Central  Google Scholar 

  95. Munoz-Ballester C, Mahmutovic D, Rafiqzad Y, Korot A, Robel S (2022) Mild traumatic brain injury-induced disruption of the blood-brain barrier triggers an atypical neuronal response. Front Cell Neurosci. https://doi.org/10.3389/fncel.2022.821885

    Article  PubMed  PubMed Central  Google Scholar 

  96. Guo P et al (2022) Alzheimer′s disease with sleep insufficiency: a cross-sectional study on correlations among clinical characteristics, orexin, its receptors, and the blood-brain barrier. Neural Regen Res. https://doi.org/10.4103/1673-5374.360250

    Article  PubMed  PubMed Central  Google Scholar 

  97. Festoff BW, Sajja RK, van Dreden P, Cucullo L (2016) HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease. J Neuroinflammation 13(1):1–12. https://doi.org/10.1186/s12974-016-0670-z

    Article  CAS  Google Scholar 

  98. Hurtado-Alvarado G, Velázquez-Moctezuma J, Gómez-González B (2017) Chronic sleep restriction disrupts interendothelial junctions in the hippocampus and increases blood–brain barrier permeability. J Microsc 268(1):28–38. https://doi.org/10.1111/jmi.12583

    Article  CAS  PubMed  Google Scholar 

  99. G. Artiushin, F. Li, and A. Sehgal, “Modulation of sleep by trafficking of lipids through the Drosophila blood brain barrier,” bioRxiv, p. 2022.02.17.480875, 2022, [Online]

  100. Semyachkina-Glushkovskaya OV et al (2023) EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Comput Struct Biotechnol J 21:758–768. https://doi.org/10.1016/j.csbj.2022.12.019

    Article  CAS  PubMed  Google Scholar 

  101. Medina-Flores F et al (2020) Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function. Brain Behav Immun 89(186):118–132. https://doi.org/10.1016/j.bbi.2020.05.077

    Article  CAS  PubMed  Google Scholar 

  102. Hurtado-Alvarado G, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B (2016) A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE 11(11):1–22. https://doi.org/10.1371/journal.pone.0167236

    Article  CAS  Google Scholar 

  103. Hurtado-Alvarado G et al (2018) The yin/yang of inflammatory status: blood-brain barrier regulation during sleep. Brain Behav Immun 69:154–166. https://doi.org/10.1016/j.bbi.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  104. Sun J, Wu J, Hua F, Chen Y, Zhan F, Xu G (2020) Sleep deprivation induces cognitive impairment by increasing blood-brain barrier permeability via CD44. Front Neurol 11:1–11. https://doi.org/10.3389/fneur.2020.563916

    Article  Google Scholar 

  105. Kaneshwaran K et al (2019) Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia. Sci Adv 5(12):1–13. https://doi.org/10.1126/sciadv.aax7331

    Article  CAS  Google Scholar 

  106. Stanhope BA, Jaggard JB, Gratton M, Brown EB, Keene AC (2020) Sleep regulates glial plasticity and expression of the engulfment receptor draper following neural report sleep regulates glial plasticity and expression of the engulfment receptor draper following neural injury. Curr Biol 30(6):1092-1101.e3. https://doi.org/10.1016/j.cub.2020.02.057

    Article  CAS  PubMed  Google Scholar 

  107. Mason GM, Lokhandwala S, Riggins T, Spencer RMC, Sciences B, Program B (2021) Sleep and human cognitive development Gina. Sleep Med Rev. https://doi.org/10.1016/j.smrv.2021.101472.Sleep

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tai F et al (2020) Treadmill exercise ameliorates chronic REM sleep deprivation-induced anxiety-like behavior and cognitive impairment in C57BL/6J mice. Brain Res Bull 164:198–207. https://doi.org/10.1016/j.brainresbull.2020.08.025

    Article  CAS  PubMed  Google Scholar 

  109. Khalafi M, Alamdari K, Symonds M, Rohani H, Sakhaei M (2022) A comparison of the impact of exercise training with dietary intervention versus dietary intervention alone on insulin resistance and glucose regulation in individual with overweight or obesity: a systemic review and meta-analysis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2064424

    Article  PubMed  Google Scholar 

  110. Rhea EM, Banks WA (2021) A historical perspective on the interactions of insulin at the blood-brain barrier. J Neuroendocrinol 4(33):1–19. https://doi.org/10.1111/jne.12929.A

    Article  Google Scholar 

  111. Shokri-Kojori E et al (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 115(17):4483–4488. https://doi.org/10.1073/pnas.1721694115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barthélemy NR, Liu H, Lu W, Kotzbauer PT, Randall J (2021) Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Annu Neurol 87(5):700–709. https://doi.org/10.1002/ana.25702.Sleep

    Article  Google Scholar 

  113. Li ZH, Cheng L, Wen C, Ding L, You QY, Zhang SB (2022) Activation of CNR1/PI3K/AKT Pathway by Tanshinone IIA protects hippocampal neurons and ameliorates sleep deprivation-induced cognitive dysfunction in rats. Front Pharmacol 13:1–16. https://doi.org/10.3389/fphar.2022.823732

    Article  CAS  Google Scholar 

  114. Xie Y et al (2020) Chronic sleep fragmentation shares similar pathogenesis with neurodegenerative diseases : Endosome - autophagosome - lysosome pathway dysfunction and microglia - mediated neuroinflammation. Cns Neurosci Ther. https://doi.org/10.1111/cns.13218

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lo JC, Chong PLH, Ganesan S, Leong RLF, Chee MWL (2016) Sleep deprivation increases formation of false memory. J Sleep Res 25(6):673–682. https://doi.org/10.1111/jsr.12436

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC (2020) The effect of zolpidem on memory consolidation over a night of sleep. Sleep 43(11):1–12. https://doi.org/10.1093/sleep/zsaa084

    Article  Google Scholar 

  117. Jung YJ, Oh E (2021) Is REM sleep behavior disorder a friend or foe of obstructive sleep apnea ? Clinical and etiological implications for neurodegeneration. J Clin Sleep Med. https://doi.org/10.5664/jcsm.9144REVIEW

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lucey BP et al (2021) Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer ’ s disease. Brain 144:2852–2862. https://doi.org/10.1093/brain/awab272

    Article  PubMed  PubMed Central  Google Scholar 

  119. Xu YP et al (2021) Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway. Aging 13:3101–3111. https://doi.org/10.18632/aging.202503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M (2022) Depression: pathogenesis and therapeutic implications. Mol Psychiatry 27(6):2689–2699. https://doi.org/10.1038/s41380-022-01520-y.Dysregulation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tononi C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration giulio. Neuron 81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025.Sleep

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hengen KB et al (2016) Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake article neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165(1):180–191. https://doi.org/10.1016/j.cell.2016.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aime M, Caicini N, Borsa M, Campelo T, Adamatidis A (2022) Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep.pdf. Neuroscience 376(6594):724–730. https://doi.org/10.1126/science.abk2734

    Article  CAS  Google Scholar 

  124. Pignatelli M et al (2017) Synaptic plasticity onto dopamine neurons shapes article synaptic plasticity onto dopamine neurons shapes fear learning. Neuron 93(2):425–440. https://doi.org/10.1016/j.neuron.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  125. Krempel R, Schleicher D, Jarvers I, Ecker A, Brunner R, Kandsperger S (2022) Sleep quality and neurohormonal and psychophysiological accompanying factors in adolescents with depressive disorders: study protocol. BJPsych Open 8(2):1–10. https://doi.org/10.1192/bjo.2022.29

    Article  Google Scholar 

  126. Fernanez F et al (2007) Pharmacotherapy for cognitive impairment in a mouse model of down symdome. Nat Neurosci 10:411–413

    Article  Google Scholar 

  127. Vasey C, McBride J, Penta K (2021) Circadian rhythm dysregulation and restoration: the role of melatonin. Nutrients 13(10):1–21. https://doi.org/10.3390/nu13103480

    Article  CAS  Google Scholar 

  128. Heymann G et al (2020) Synergy of distinct dopamine projection populations in behavioral reinforcement article synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron 105(5):909-920.e5. https://doi.org/10.1016/j.neuron.2019.11.024

    Article  CAS  PubMed  Google Scholar 

  129. Shi YF, Yu YQ (2013) The roles of glutamate in sleep and wakefulness. J Zhej Univ 42:583–590

    CAS  Google Scholar 

  130. Maciejczyk M, Żebrowska E, Chabowski A (2019) Insulin resistance and oxidative stress in the brain: What’s new? Int J Mol Sci 20:4. https://doi.org/10.3390/ijms20040874

    Article  CAS  Google Scholar 

  131. Kothari V, Cardona Z, Chirakalwasan N, Anothaisintawee T, Reutrakul S (2021) Sleep interventions and glucose metabolism: systematic review and meta-analysis. Sleep Med 78:24–35. https://doi.org/10.1016/j.sleep.2020.11.035

    Article  PubMed  Google Scholar 

  132. Martin H et al (2022) Insulin modulates emotional behavior through a serotonin-dependent mechanism. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01812-3

    Article  PubMed  PubMed Central  Google Scholar 

  133. Srivastava AK, Choudhury SR, Karmakar S (2021) Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson’s disease models. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2020.108372

    Article  PubMed  Google Scholar 

  134. Ozansoy M et al (2020) Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci 73:237–244. https://doi.org/10.1016/j.jocn.2019.11.046

    Article  CAS  PubMed  Google Scholar 

  135. Naderi-Behdani F et al (2022) Effect of melatonin on stress-induced hyperglycemia and insulin resistance in critically-ill patients: a randomized double-blind, placebo-controlled clinical trial. Casp J Intern Med 13(1):51–60. https://doi.org/10.22088/cjim.13.1.51

    Article  Google Scholar 

  136. Guo R, Zheng H, Li Q, Qiu X, Zhang J, Cheng Z (2022) Melatonin alleviates insulin resistance through the PI3K/AKT signaling pathway in ovary granulosa cells of polycystic ovary syndrome. Reprod Biol. https://doi.org/10.1016/j.repbio.2021.100594

    Article  PubMed  Google Scholar 

  137. Shehata RSA, Mohamed-Nour ZA, Abdelrahim-Badr AM, Khalifa EM (2021) Serotonin variations and sleep disorders among shift workers. A cross-sectional study. Toxicol Ind Health 37:603–609. https://doi.org/10.1177/07482337211033135

    Article  PubMed  Google Scholar 

  138. Kim J-M et al (2022) Serotonin modifies the impact of sleep disturbance on suicidality in patients with acute coronary syndrome. Front Psychiatry 13:1–8. https://doi.org/10.3389/fpsyt.2022.1046715

    Article  Google Scholar 

  139. Choi WG et al (2021) Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. J Clin Invest 131(23):1–12. https://doi.org/10.1172/JCI145331

    Article  Google Scholar 

  140. Feng H et al (2020) Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat Commun 11:1. https://doi.org/10.1038/s41467-020-17401-3

    Article  CAS  Google Scholar 

  141. De Sevilla MEF, Pignatelli J (2022) Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry 27:2182–2196. https://doi.org/10.1038/s41380-022-01442-9

    Article  CAS  Google Scholar 

  142. Erichsen JM, Calva CB, Reagan LP, Fadel JR (2021) Physiology & Behavior Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 234:113370. https://doi.org/10.1016/j.physbeh.2021.113370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Green ME, Bernet V, Cheung J (2021) Thyroid dysfunction and sleep disorders. Front Endocrinol (Lausanne) 12:10–13. https://doi.org/10.3389/fendo.2021.725829

    Article  Google Scholar 

  144. Liu PY et al (2021) Clamping cortisol and testosterone mitigates the development of insulin resistance during sleep restriction in men. J Clin Endocrinol Metab 106(9):E3436–E3448. https://doi.org/10.1210/clinem/dgab375

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rong-jin LIN, Xiao-feng DAI (2022) Sleep deprivation affects sex hormones secretion by regulating the expression of the circadian clock gene in the hypothalamus and pituitary via the PI3K / Akt signaling pathway in pregnant rats. Acta Physiol Sin 74(2019):534–540. https://doi.org/10.13294/j.aps.2022.0067

    Article  Google Scholar 

  146. De-Oliveira RF, Da Costa-Daniele TM, Façanha CFS et al (2018) Adiponectin levels and sleep deprivation in patients with endocrine metabolic disorders. Rev Assoc Med Bras 64(12):1122–1128. https://doi.org/10.1590/1806-9282.64.12.1122

    Article  Google Scholar 

  147. Lu M, Fang F, Wang Z, Wei P, Hu C, Wei Y (2019) Association between serum/plasma levels of adiponectin and obstructive sleep apnea hypopnea syndrome: a meta-analysis. Lipids Health Dis 18(1):1–8. https://doi.org/10.1186/s12944-019-0973-z

    Article  Google Scholar 

  148. Brady EM et al (2018) Sleep duration, obesity and insulin resistance in a multi-ethnic UK population at high risk of diabetes. Diabetes Res Clin Pract 139:195–202. https://doi.org/10.1016/j.diabres.2018.03.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Vellore Institute of Technology-Vellore for providing support and facilities.

Funding

The author does not receive any financial assistance for the article.

Author information

Authors and Affiliations

Authors

Contributions

KR Conceptualization, data collection, and writing; VDR Editing and supervision.

Corresponding author

Correspondence to V. Devi Rajeswari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article contains no studies with human participants performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasubbu, K., Ramanathan, G., Venkatraman, G. et al. Sleep-associated insulin resistance promotes neurodegeneration. Mol Biol Rep 50, 8665–8681 (2023). https://doi.org/10.1007/s11033-023-08710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08710-z

Keywords

Navigation