Skip to main content

Advertisement

Log in

The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3.

Methods and results

In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation.

Conclusions

BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are contained within the article.

References

  1. Lin H, Caroll KS (2018) Introduction: posttranslational protein modification. Chem Rev 118:887–888

    Article  CAS  PubMed  Google Scholar 

  2. Czuba LC, Hillgren KM, Swaan PW (2018) Post-translational modifications of transporters. Pharmacol Ther 192:88–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leon L, Jeannin J-F, Bettaieb A (2008) Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 19:77–83

    Article  CAS  PubMed  Google Scholar 

  4. Stoilova B, Kowenz-Leutz E, Scheller M, Leutz A (2013) Lymphoid to myeloid cell trans-differentiation is determined by C/EBPβ structure and post-translational modifications. PLoS ONE 8:e65169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liao C-H, Wang Y-H, Chang W-W, Yang B-C, Wu T-J, Liu W-L, Yu AL, Yu J (2018) Leucine-rich repeat neuronal protein 1 regulates differentiation of embryonic stem cells by post-translational modifications of pluripotency factors. Stem Cells 36:1514–1524

    Article  CAS  PubMed  Google Scholar 

  6. Zou B, Chim CS, Pang R, Zeng H, Dai Y, Zhang R, Lam CSC, Tan VPY, Hung IFN, Lan HY, Wong BCY (2012) XIAP-associated factor 1 (XAF1), a novel target of p53, enhances p53-mediated apoptosis via post-translational modification. Mol Carcinog 51:422–432

    Article  CAS  PubMed  Google Scholar 

  7. Garrigue-Antar L, Hartigan N, Kadler KE (2002) Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. J Biol Chem 277:43327–43334

    Article  CAS  PubMed  Google Scholar 

  8. Heo K-S (2019) Regulation of post-translational modification in breast cancer treatment. BMB Rep 52:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deneyer N, Bridoux L, Bombled C, Pringels T, Bergiers I, Pyr Dit Ruys S, Vertommen D, Twizere J-C, Rezsohazy R (2019) HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. Biochim Biophys Acta Gene Regul Mech 1862:194404

    Article  CAS  PubMed  Google Scholar 

  10. Bernard P, Harley VR (2010) Acquisition of SOX transcription factor specificity through protein-protein interaction, modulation of wnt signalling and post-translational modification. Int J Biochem Cell Biol 42:400–410

    Article  CAS  PubMed  Google Scholar 

  11. Wu S, Xia Y, Liu X, Sun J (2010) Vitamin D receptor deletion leads to reduced level of IkappaBalpha protein through protein translation, protein-protein interaction, and post-translational modification. Int J Biochem Cell Biol 42:329–336

    Article  PubMed  Google Scholar 

  12. Woods AS, Wang H-YJ, Jackson SN (2007) Sulfation, the up-and-coming post-translational modification: its role and mechanism in protein-protein interaction. J Proteome Res 6:1176–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilkinson KA, Newton SM, Stewart GR, Martineau AR, Patel J, Sullivan SM, Herrmann J-L, Neyrolles O, Young DB, Wilkinson RJ (2009) Genetic determination of the effect of post-translational modification on the innate immune response to the 19 kDa lipoprotein of Mycobacterium tuberculosis. BMC Microbiol 9:93

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin J-S (2020) Immunological significance of HMGB1 post-translational modification and Redox Biology. Front Immunol 11:1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawkins CL, Davies MJ (2019) Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 294:19683–19708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alhama J, Fuentes-Almagro CA, Abril N, Michán C (2018) Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. Sci Total Environ 636:656–669

    Article  CAS  PubMed  Google Scholar 

  17. Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A (2019) Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol Biochem 144:110–117

    Article  CAS  PubMed  Google Scholar 

  18. Hopp A-K, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD and ADP-Ribosylation. Cells 8

  19. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merrick M (2014) Post-translational modification of P II signal transduction proteins. Front Microbiol 5:763

    PubMed  Google Scholar 

  21. Allfrey VG, Faulkner R, Mirsky AE, ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS (1964) Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ (2022) Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 13:982222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das C, Kundu TK (2005) Transcriptional regulation by the acetylation of nonhistone proteins in humans -- a new target for therapeutics. IUBMB Life 57:137–149

    Article  CAS  PubMed  Google Scholar 

  24. Selvi RB, Kundu TK (2009) Reversible acetylation of chromatin: implication in regulation of gene expression, disease and therapeutics. Biotechnol J 4:375–390

    Article  CAS  PubMed  Google Scholar 

  25. Verdone L, Agricola E, Caserta M, Di Mauro E (2006) Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 5:209–221

    Article  CAS  PubMed  Google Scholar 

  26. Alsalim H, Jafarpour F, Tanhaei Vash N, Nasr-Esfahani MH, Niasari-Naslaji A (2018) Effect of DNA and histone Methyl Transferase inhibitors on outcomes of Buffalo-Bovine interspecies somatic Cell Nuclear transfer. Cell Reprogram 20:256–267

    Article  CAS  PubMed  Google Scholar 

  27. Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, Zhou C, Koren I, Gygi SP, Elledge SJ (2015) Quantitative proteomic atlas of Ubiquitination and Acetylation in the DNA damage response. Mol Cell 59:867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arenas A, Chen J, Kuang L, Barnett KR, Kasarskis EJ, Gal J, Zhu H (2020) Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum Mol Genet 29:2684–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito A, Shimazu T, Maeda S, Shah AA, Tsunoda T, Iemura S-I, Natsume T, Suzuki T, Motohashi H, Yamamoto M, Yoshida M (2015) The subcellular localization and activity of cortactin is regulated by acetylation and interaction with Keap1. Sci Signal 8:ra120

    Article  PubMed  Google Scholar 

  30. Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y, Wan W (2023) Acetylation in the regulation of autophagy. Autophagy 19:379–387

    Article  CAS  PubMed  Google Scholar 

  32. Huang H, Ouyang Q, Mei K, Liu T, Sun Q, Liu W, Liu R (2023) Acetylation of SCFD1 regulates SNARE complex formation and autophagosome-lysosome fusion. Autophagy 19:189–203

    Article  CAS  PubMed  Google Scholar 

  33. Holmes WM, Mannakee BK, Gutenkunst RN, Serio TR (2014) Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat Commun 5:4383

    Article  CAS  PubMed  Google Scholar 

  34. Henry RA, Mancuso P, Kuo Y-M, Tricarico R, Tini M, Cole PA, Bellacosa A, Andrews AJ (2016) Interaction with the DNA repair protein thymine DNA glycosylase regulates histone acetylation by p300. Biochemistry 55:6766–6775

    Article  CAS  PubMed  Google Scholar 

  35. Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017) Human Apurinic/Apyrimidinic endonuclease (APE1) is acetylated at DNA damage Sites in chromatin, and Acetylation modulates its DNA repair activity. Mol Cell Biol 37

  36. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174

    Article  CAS  PubMed  Google Scholar 

  37. Gao X, Lei J, Zhu Y, Chen X, Mao F, Miao M, Quan Y, Yu W (2021) Role of the Bombyx mori nucleopolyhedrovirus LEF3 acetylation on viral replication. Microb Pathog 158:105109

    Article  CAS  PubMed  Google Scholar 

  38. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  39. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    Article  CAS  PubMed  Google Scholar 

  40. Shiama N (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7:230–236

    Article  CAS  PubMed  Google Scholar 

  41. Akande OE, Damle PK, Pop M, Sherman NE, Szomju BB, Litovchick LV, Grossman SR (2019) DBC1 regulates p53 Stability via Inhibition of CBP-Dependent p53 polyubiquitination. Cell Rep 26

  42. Attar N, Kurdistani SK (2017) Exploitation of EP300 and CREBBP lysine acetyltransferases by Cancer. Cold Spring Harb Perspect Med 7

  43. Dutta R, Tiu B, Sakamoto KM (2016) CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 119:37–43

    Article  CAS  PubMed  Google Scholar 

  44. Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R (2013) Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 304:F601–F613

    Article  CAS  PubMed  Google Scholar 

  45. Jin Q, Yu L-R, Wang L, Zhang Z, Kasper LH, Lee J-E, Wang C, Brindle PK, Dent SYR, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30:249–262

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Huang C, Xiong T, Zhuang C, Zhuang C, Li Y, Ye J, Gui Y (2019) A CRISPR interference of CBP and p300 selectively Induced Synthetic lethality in bladder Cancer cells. Int J Biol Sci 15:1276–1286

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kleszcz R, Szymańska A, Krajka-Kuźniak V, Baer-Dubowska W, Paluszczak J (2019) Inhibition of CBP/β-catenin and porcupine attenuates wnt signaling and induces apoptosis in head and neck carcinoma cells. Cell Oncol (Dordr) 42:505–520

    Article  CAS  PubMed  Google Scholar 

  48. Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864:1372–1401

    Article  CAS  PubMed  Google Scholar 

  49. Lyu H, Xu G, Chen P, Song Q, Feng Q, Yi Y, Zheng S (2020) 20-Hydroxyecdysone receptor-activated Bombyx mori CCAAT/enhancer-binding protein gamma regulates the expression of BmCBP and subsequent histone H3 lysine 27 acetylation in Bo. Mori. Insect Mol Biol 29:256–270

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Wang Y, Li Y, Lin Y, Hou Y, Zhang Y, Wei S, Zhao P, Zhao P, He H (2016) LBD1 of vitellogenin receptor specifically binds to the female-specific storage protein SP1 via LBR1 and LBR3. PLoS ONE 11:e0162317

    Article  PubMed  PubMed Central  Google Scholar 

  51. Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Wang A, Li Y, Li Z, Gong J, Hou Y, Xia Q (2014) Molecular cloning and expression Profile of a Novel Bombyx mori Arylphorin Member BmSP3. Sci Seric 40:613–619 (in Chinese)

    CAS  Google Scholar 

  53. Nie Z, Zhu H, Zhou Y, Wu C, Liu Y, Sheng Q, Lv Z, Zhang W, Yu W, Jiang C, Xie L, Zhang Y, Yao J (2015) Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori. Proteomics 15:3253–3266

    Article  CAS  PubMed  Google Scholar 

  54. Sun Z, Ma Y, Liu Y, Lv J, Wang D, You Z, Jiang C, Sheng Q, Nie Z (2022) The Acetylation modification of SP1 regulates the protein Stability in Silkworm. Appl Biochem Biotechnol 194:1621–1635

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Y, Wu C, Sheng Q, Jiang C, Chen Q, Lv Z, Yao J, Nie Z (2016) Lysine acetylation stabilizes SP2 protein in the silkworm Bombyx mori. J Insect Physiol 91–92:56–62

    Article  PubMed  Google Scholar 

  56. Chen Y, Lv J, Zu G, Yang F, Geng J, You Z, Jiang C, Sheng Q, Nie Z (2023) BmCBP Catalyzes the Acetylation of BmApoLp-II Protein and Regulates Its Stability in Silkworm, Bombyx mori. Insects 14

  57. Zhao Y, Garcia BA (2015) Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7:a025064

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    Article  CAS  PubMed  Google Scholar 

  59. Han Y, Li H, Hu Y, Li P, Wang H, Nie Z, Yao S (2015) Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes. Anal Chem 87:9179–9185

    Article  CAS  PubMed  Google Scholar 

  60. Liu C, Yang Q, Zhu Q, Lu X, Li M, Hou T, Li Z, Tang M, Li Y, Wang H, Yang Y, Wang H, Zhao Y, Wen H, Liu X, Mao Z, Zhu W-G (2020) CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis. Theranostics 10:1758–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moreno-Sanchez R, Gallardo-Perez JC, Pacheco-Velazquez SC, Robledo-Cadena DX, Rodriguez-Enriquez S, Encalada R, Saavedra E, Marin-Hernandez A (2021) Regulatory role of acetylation on enzyme activity and fluxes of energy metabolism pathways. Biochim Biophys Acta Gen Subj 1865:130021

    Article  CAS  PubMed  Google Scholar 

  62. Shvedunova M, Akhtar A (2022) Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 23:329–349

    Article  CAS  PubMed  Google Scholar 

  63. Ma Y, Wu C, Liu J, Liu Y, Lv J, Sun Z, Wang D, Jiang C, Sheng Q, You Z, Nie Z (2020) The stability and antiapoptotic activity of Bm30K-3 can be improved by lysine acetylation in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 103:e21649

    Article  CAS  PubMed  Google Scholar 

  64. Lv J, Li S, Liu Y, Sun Z, Wang D, You Z, Jiang C, Sheng Q, Nie Z (2021) The acetylation modification regulates the stability of Bm30K-15 protein and its mechanism in silkworm, Bombyx mori. Arch Insect Biochem Physiol 107:e21823

    Article  CAS  PubMed  Google Scholar 

  65. Yang F, Zhu B, Liu J, Liu Y, Jiang C, Sheng Q, Qiu J, Nie Z (2020) The effect of acetylation on the protein stability of BmApoLp-III in the silkworm, Bombyx mori. Insect Mol Biol 29:104–111

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by financial grants from the Natural Science Foundation of Zhejiang Provice (No. LY20C170002) and the National Natural Science Foundation of China (NO. 31772677).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Review and editing by [Guowei Zu] and [Zuoming Nie], methodology by [Guowei Zu], [Zihan Sun], [Yanmei Chen], [Jiasheng Geng], [Jiao Lv], and [Zuoming Nie], Conceptualization by [Zhengying You], [Caiying Jiang], [Qing Sheng], The first draft of the manuscript was written by [Guowei Zu] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zuoming Nie.

Ethics declarations

Conflict of interest

No conflict of interest exits in this paper.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, G., Sun, Z., Chen, Y. et al. The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori. Mol Biol Rep 50, 8509–8521 (2023). https://doi.org/10.1007/s11033-023-08699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08699-5

Keywords

Navigation