Skip to main content
Log in

NAD+ metabolism and eye diseases: current status and future directions

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients’ quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable—no new data generated.

References

  1. Xie N, Zhang L, Gao W (2020) NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target therapy 5(1):227

    Article  CAS  Google Scholar 

  2. Xiao W, Wang RS, Handy DE (2018) NAD(H) and NADP(H) redox couples and Cellular Energy Metabolism. Antioxid Redox Signal 28(3):251–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chu X, Raju RP (2022) Regulation of NAD(+) metabolism in aging and disease. Metab Clin Exp 126:154923

    Article  CAS  PubMed  Google Scholar 

  4. Williams PA, Harder JM, Foxworth NE (2017) Vitamin B(3) modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Sci (New York NY) 355(6326):756–760

    Article  CAS  Google Scholar 

  5. Koenekoop RK, Wang H, Majewski J (2012) Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet 44(9):1035–1039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ramírez-Pardo I, Villarejo-Zori B, Jiménez-Loygorri JI (2022) Ambra1 haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration. Autophagy :1–21

  7. Braidy N, Guillemin GJ, Mansour H (2011) Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J 278(22):4425–4434

    Article  CAS  PubMed  Google Scholar 

  8. Houtkooper RH, Cantó C, Wanders RJ (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223

    Article  CAS  PubMed  Google Scholar 

  9. Kaja S, Shah AA, Haji SA (2015) Nampt/PBEF/visfatin serum levels: a new biomarker for retinal blood vessel occlusions. Clin Ophthalmol (Auckland NZ) 9:611–618

    Article  Google Scholar 

  10. Lin JB, Kubota S, Ban N (2016) NAMPT-Mediated NAD(+) biosynthesis is essential for Vision in mice. Cell Rep 17(1):69–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jadeja RN, Powell FL, Jones MA (2018) Loss of NAMPT in aging retinal pigment epithelium reduces NAD(+) availability and promotes cellular senescence. Aging 10(6):1306–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wei Y, Xiang H, Zhang W (2022) Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 13:970553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Neumann CS, Olivas KC, Anderson ME (2018) Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol Cancer Ther 17(12):2633–2642

    Article  CAS  PubMed  Google Scholar 

  14. Zapata-Pérez R, Tammaro A, Schomakers BV (2021) Reduced nicotinamide mononucleotide is a new and potent NAD(+) precursor in mammalian cells and mice. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 35(4):e21456

    Article  PubMed  Google Scholar 

  15. Zapata-Pérez R, Wanders RJA, van Karnebeek CDM (2021) NAD(+) homeostasis in human health and disease. EMBO Mol Med 13(7):e13943

    Article  PubMed Central  PubMed  Google Scholar 

  16. Abdelraheim SR, Spiller DG, McLennan AG (2017) Mouse Nudt13 is a mitochondrial nudix hydrolase with NAD(P)H pyrophosphohydrolase activity. Protein J 36(5):425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pandey N, Black BE (2021) Rapid Detection and Signaling of DNA damage by PARP-1. Trends Biochem Sci 46(9):744–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fliegert R, Heeren J, Koch-Nolte F (2019) Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochem Soc Trans 47(1):329–337

    Article  CAS  PubMed  Google Scholar 

  19. Tolomeo S, Chiao B, Lei Z (2020) A novel role of CD38 and oxytocin as Tandem Molecular moderators of human Social Behavior. Neurosci Biobehav Rev 115:251–272

    Article  CAS  PubMed  Google Scholar 

  20. Chini CCS, Peclat TR, Warner GM (2020) CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. Nat metabolism 2(11):1284–1304

    Article  CAS  Google Scholar 

  21. Gerdts J, Brace EJ, Sasaki Y (2015) SARM1 activation triggers axon degeneration locally via NAD+ destruction. Sci (New York NY) 348(6233):453–457

    Article  CAS  Google Scholar 

  22. Waller TJ, Collins CA (2022) Multifaceted roles of SARM1 in axon degeneration and signaling. Front Cell Neurosci 16:958900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wu QJ, Zhang TN, Chen HH (2022) The sirtuin family in health and disease. Signal Transduct Target therapy 7(1):402

    Article  CAS  Google Scholar 

  24. Jang KH, Hwang Y, Kim E (2020) PARP1 impedes SIRT1-Mediated autophagy during degeneration of the retinal pigment epithelium under oxidative stress. Mol Cells 43(7):632–644

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Chen G, Yan F, Wei W (2022) CD38 deficiency protects the retina from ischaemia/reperfusion injury partly via suppression of TLR4/MyD88/NF-κB signalling. Exp Eye Res 219:109058

    Article  CAS  PubMed  Google Scholar 

  26. Lin JB, Apte RS (2018) NAD(+) and sirtuins in retinal degenerative diseases: a look at future therapies. Prog Retin Eye Res 67:118–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Falk MJ, Zhang Q, Nakamaru-Ogiso E (2012) NMNAT1 mutations cause Leber congenital amaurosis. Nat Genet 44(9):1040–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Deng Y, Huang H, Wang Y (2015) A novel missense NMNAT1 mutation identified in a consanguineous family with Leber congenital amaurosis by targeted next generation sequencing. Gene 569(1):104–108

    Article  CAS  PubMed  Google Scholar 

  29. Greenwald SH, Charette JR, Staniszewska M (2016) Mouse models of NMNAT1-Leber congenital amaurosis (LCA9) recapitulate key features of the Human Disease. Am J Pathol 186(7):1925–1938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sasaki Y, Margolin Z, Borgo B (2015) Characterization of Leber congenital amaurosis-associated NMNAT1 mutants. J Biol Chem 290(28):17228–17238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kuribayashi H, Baba Y, Iwagawa T (2018) Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation. Cell Death Dis 9(9):891

    Article  PubMed Central  PubMed  Google Scholar 

  32. Greenwald SH, Brown EE, Scandura MJ (2021) Mutant Nmnat1 leads to a retina-specific decrease of NAD + accompanied by increased poly(ADP-ribose) in a mouse model of NMNAT1-associated retinal degeneration. Hum Mol Genet 30(8):644–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sasaki Y, Kakita H, Kubota S (2020) SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. eLife 9

  34. Ozaki E, Gibbons L, Neto NG (2020) SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Life Sci alliance 3(5)

  35. Brown EE, Scandura MJ, Mehrotra S (2022) Reduced nuclear NAD + drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 31(9):1370–1388

    Article  CAS  PubMed  Google Scholar 

  36. Sokolov D, Sechrest ER, Wang Y (2021) Nuclear NAD(+)-biosynthetic enzyme NMNAT1 facilitates development and early survival of retinal neurons. eLife. 10

  37. Greenwald SH, Brown EE, Scandura MJ (2020) Gene Therapy preserves retinal structure and function in a mouse model of NMNAT1-Associated Retinal Degeneration. Mol therapy Methods Clin Dev 18:582–594

    Article  CAS  Google Scholar 

  38. Fuller-Carter PI, Basiri H, Harvey AR (2020) Focused update on AAV-Based gene therapy clinical trials for inherited retinal degeneration. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy. 34(6):763–781

  39. Uehara N, Miki K, Tsukamoto R (2006) Nicotinamide blocks N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in rats through poly (ADP-ribose) polymerase activity and Jun N-terminal kinase/activator protein-1 pathway inhibition. Exp Eye Res 82(3):488–495

    Article  CAS  PubMed  Google Scholar 

  40. Sahaboglu A, Tanimoto N, Bolz S (2014) Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors. Cell Death Dis 5(5):e1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhu Y, Zhang L, Sasaki Y (2013) Protection of mouse retinal ganglion cell axons and soma from glaucomatous and ischemic injury by cytoplasmic overexpression of Nmnat1. Investig Ophthalmol Vis Sci 54(1):25–36

    Article  CAS  Google Scholar 

  42. Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Sci (New York NY) 305(5686):1010–1013

    Article  CAS  Google Scholar 

  44. Kitaoka Y, Hayashi Y, Kumai T (2009) Axonal and cell body protection by nicotinamide adenine dinucleotide in tumor necrosis factor-induced optic neuropathy. J Neuropathol Exp Neurol 68(8):915–927

    Article  CAS  PubMed  Google Scholar 

  45. Sasaki Y, Vohra BP, Lund FE (2009) Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J neuroscience: official J Soc Neurosci 29(17):5525–5535

    Article  CAS  Google Scholar 

  46. Figley MD, Gu W, Nanson JD (2021) SARM1 is a metabolic sensor activated by an increased NMN/NAD(+) ratio to trigger axon degeneration. Neuron 109(7):1118–36e11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Finnegan LK, Chadderton N, Kenna PF (2022) SARM1 ablation is protective and preserves spatial vision in an in vivo mouse model of retinal ganglion cell degeneration. Int J Mol Sci 23(3)

  48. Williams PA, Harder JM, Foxworth NE (2017) Nicotinamide and WLD(S) Act together to prevent neurodegeneration in Glaucoma. Front NeuroSci 11:232

    Article  PubMed Central  PubMed  Google Scholar 

  49. Fang F, Zhuang P, Feng X (2022) NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol therapy: J Am Soc Gene Therapy 30(4):1421–1431

    Article  CAS  Google Scholar 

  50. Tribble JR, Hagström A, Jusseaume K (2023) NAD salvage pathway machinery expression in normal and glaucomatous retina and optic nerve. Acta Neuropathol Commun 11(1):18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kuribayashi H, Katahira M, Aihara M (2023) Loss-of-function approach using mouse retinal explants showed pivotal roles of Nmnat2 in early and middle stages of retinal development. Mol Biol Cell 34(1):ar4

    Article  CAS  PubMed  Google Scholar 

  52. Kouassi Nzoughet J, de la Chao JM, Guehlouz K (2019) Nicotinamide Deficiency in Primary Open-Angle Glaucoma. Investig Ophthalmol Vis Sci 60(7):2509–2514

    Article  Google Scholar 

  53. Taechameekietichai T, Chansangpetch S, Peerawaranun P (2021) Association between daily niacin intake and Glaucoma: National Health and Nutrition Examination Survey. Nutrients 13(12)

  54. Ji D, Li GY, Osborne NN (2008) Nicotinamide attenuates retinal ischemia and light insults to neurones. Neurochem Int 52(4–5):786–798

    Article  CAS  PubMed  Google Scholar 

  55. Chou TH, Romano GL, Amato R (2020) Nicotinamide-Rich Diet in DBA/2J Mice Preserves Retinal Ganglion Cell Metabolic Function as Assessed by PERG Adaptation to Flicker. Nutrients 12(7)

  56. Hui F, Tang J, Williams PA (2020) Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: a crossover randomized clinical trial. Clin Exp Ophthalmol 48(7):903–914

    Article  PubMed  Google Scholar 

  57. De Moraes CG, John SWM, Williams PA (2022) Nicotinamide and pyruvate for Neuroenhancement in Open-Angle Glaucoma: a phase 2 Randomized Clinical Trial. JAMA Ophthalmol 140(1):11–18

    Article  PubMed  Google Scholar 

  58. Lee D, Tomita Y, Miwa Y (2022) Nicotinamide Mononucleotide prevents retinal dysfunction in a mouse model of Retinal Ischemia/Reperfusion Injury. Int J Mol Sci 23(19).

  59. Gilley J, Orsomando G, Nascimento-Ferreira I (2015) Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep 10(12):1974–1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang X, Zhang N, Chrenek MA (2021) Systemic Treatment with Nicotinamide Riboside Is Protective in Two Mouse Models of Retinal Ganglion Cell Damage. Pharmaceutics 13(6)

  61. Jang KH, Do YJ, Son D (2017) AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis 8(1):e2526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhang X, Henneman NF, Girardot PE (2020) Systemic treatment with Nicotinamide Riboside is protective in a mouse model of Light-Induced Retinal Degeneration. Investig Ophthalmol Vis Sci 61(10):47

    Article  CAS  Google Scholar 

  63. Zhang M, Jiang N, Chu Y (2020) Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 10(1):2464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Golestaneh N, Chu Y, Cheng SK (2016) Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J translational Med 14(1):344

    Article  Google Scholar 

  65. Saini JS, Corneo B, Miller JD (2017) Nicotinamide ameliorates Disease Phenotypes in a human iPSC model of age-related Macular Degeneration. Cell Stem Cell 20(5):635–47e7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhu Y, Zhao KK, Tong Y (2016) Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy. Sci Rep 6:26322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ren C, Hu C, Wu Y (2022) Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxidative medicine and cellular longevity 2022:5961123

  68. Boles NC, Fernandes M, Swigut T (2020) Epigenomic and transcriptomic changes during human RPE EMT in a stem cell model of Epiretinal membrane Pathogenesis and Prevention by Nicotinamide. Stem cell reports 14(4):631–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hazim RA, Volland S, Yen A (2019) Rapid differentiation of the human RPE cell line, ARPE-19, induced by nicotinamide. Exp Eye Res 179:18–24

    Article  CAS  PubMed  Google Scholar 

  70. Obrosova IG, Minchenko AG, Frank RN (2004) Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. Int J Mol Med 14(1):55–64

    CAS  PubMed  Google Scholar 

  71. Choudhuri S, Mandal LK, Paine SK (2013) Role of hyperglycemia-mediated erythrocyte redox state alteration in the development of diabetic retinopathy. Retina (Philadelphia Pa) 33(1):207–216

    Article  CAS  PubMed  Google Scholar 

  72. Zhu SS, Ren Y, Zhang M (2011) Wld(S) protects against peripheral neuropathy and retinopathy in an experimental model of diabetes in mice. Diabetologia 54(9):2440–2450

    Article  CAS  PubMed  Google Scholar 

  73. Zhou RM, Shen Y, Yao J (2016) Nmnat 1: a Security Guard of Retinal Ganglion Cells (RGCs) in Response to High Glucose Stress. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 38(6):2207-18

  74. Li Y, Li J, Zhao C (2021) Hyperglycemia-reduced NAD(+) biosynthesis impairs corneal epithelial wound healing in diabetic mice. Metab Clin Exp 114:154402

    Article  CAS  PubMed  Google Scholar 

  75. Pu Q, Guo XX, Hu JJ (2022) Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomed pharmacotherapy = Biomedecine pharmacotherapie 147:112659

    Article  CAS  Google Scholar 

  76. Li Y, Ma X, Li J (2019) Corneal denervation causes epithelial apoptosis through inhibiting NAD + biosynthesis. Investig Ophthalmol Vis Sci 60(10):3538–3546

    Article  CAS  Google Scholar 

  77. Meng YF, Pu Q, Dai SY (2021) Nicotinamide Mononucleotide alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage activation in corneal epithelial Cells/Macrophage co-culture system. J Inflamm Res 14:479–493

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hamity MV, Kolker SJ, Hegarty DM (2022) Nicotinamide Riboside alleviates corneal and somatic Hypersensitivity Induced by Paclitaxel in male rats. Investig Ophthalmol Vis Sci 63(1):38

    Article  CAS  Google Scholar 

  79. Zhao C, Li W, Duan H (2020) NAD(+) precursors protect corneal endothelial cells from UVB-induced apoptosis. Am J Physiol Cell Physiol 318(4):C796–c805

    Article  CAS  PubMed  Google Scholar 

  80. Li Z, Duan H, Li W (2019) Nicotinamide inhibits corneal endothelial mesenchymal transition and accelerates wound healing. Exp Eye Res 184:227–233

    Article  CAS  PubMed  Google Scholar 

  81. Li Z, Duan H, Jia Y (2022) Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Investig 132(1)

  82. Satchell MA, Zhang X, Kochanek PM (2003) A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD + depletion and ribosylation of 14-3-3gamma. J Neurochem 85(3):697–708

    Article  CAS  PubMed  Google Scholar 

  83. Li C, Wu LE (2021) Risks and rewards of targeting NAD(+) homeostasis in the brain. Mech Ageing Dev 198:111545

    Article  CAS  PubMed  Google Scholar 

  84. Takasawa S (2022) CD38-Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and pathophysiology. Int J Mol Sci 23(8)

  85. Higashida H, Hashii M, Tanaka Y (2019) CD38, CD157, and RAGE as Molecular Determinants for Social Behavior. Cells 9(1)

  86. Takahashi J, Kagaya Y, Kato I (2003) Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochem Biophys Res Commun 312(2):434–440

    Article  CAS  PubMed  Google Scholar 

  87. Chen CY, Lin CW, Chang CY (2011) Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol 193(4):769–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Lin CW, Chen CY, Cheng SJ (2014) Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Front Cell Neurosci 8:87

    Article  PubMed Central  PubMed  Google Scholar 

  89. Xiang L, Wu Q, Sun H (2022) SARM1 deletion in parvalbumin neurons is associated with autism-like behaviors in mice. Cell Death Dis 13(7):638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Bitterman KJ, Anderson RM, Cohen HY (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47):45099–45107

    Article  CAS  PubMed  Google Scholar 

  91. Hwang ES, Song SB (2017) Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 74(18):3347–3362

    Article  CAS  PubMed  Google Scholar 

  92. Canto C (2022) NAD(+) Precursors: A Questionable Redundancy. Metabolites 12(7)

  93. Knip M, Douek IF, Moore WP (2000) Safety of high-dose nicotinamide: a review. Diabetologia 43(11):1337–1345

    Article  CAS  PubMed  Google Scholar 

  94. Di Stefano M, Nascimento-Ferreira I, Orsomando G (2015) A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ 22(5):731–742

    Article  PubMed  Google Scholar 

  95. Sasaki Y, Zhu J, Shi Y (2021) Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp Neurol 345:113842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Trammell SA, Schmidt MS, Weidemann BJ (2016) Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 7:12948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Leung CKS, Ren ST, Chan PPM (2022) Nicotinamide riboside as a neuroprotective therapy for glaucoma: study protocol for a randomized, double-blind, placebo-control trial. Trials 23(1):45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Martens CR, Denman BA, Mazzo MR (2018) Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun 9(1):1286

    Article  PubMed Central  PubMed  Google Scholar 

  99. Sharma C, Donu D, Cen Y (2022) Emerging Role of Nicotinamide Riboside in Health and Diseases. Nutrients 14(19)

  100. Giroud-Gerbetant J, Joffraud M, Giner MP (2019) A reduced form of nicotinamide riboside defines a new path for NAD(+) biosynthesis and acts as an orally bioavailable NAD(+) precursor. Mol metabolism 30:192–202

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by 82060180 from National Natural Science Foundation of China (to W.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptu-alization, S.L. and W.Z.; writing—original draft preparation, S.L. and W.Z.; writing—review and editing, S.L. and W.Z.; supervision, W.Z.; funding acquisition, W.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wenfang Zhang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, W. NAD+ metabolism and eye diseases: current status and future directions. Mol Biol Rep 50, 8653–8663 (2023). https://doi.org/10.1007/s11033-023-08692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08692-y

Keywords

Navigation