Skip to main content
Log in

Complete genome sequence of a novel bacteriophage vB_Pci_PCMW57 infecting phytobacteria pseudomonas cichorii

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

A novel virulent bacteriophage infecting phytobacteria Pseudomonas cichorii (P. cichorii) was isolated from leafy vegetables in Brazil. P. cichorii is a Gram-negative soil phytobacterium, the causal agent of a number of economically important plant diseases worldwide.

Methods and results

In this study, a new phage specific for P. cichorii was isolated from solid samples (lettuce, chicory and cabbage), designated vB_Pci_PCMW57. Electron microscopy revealed a small virion (~ 50-nm-diameter icosahedral capsid) with a short, non-contractile tail. The genome of vB_Pci_PCMW57 is 40,117 bp in size, with a GC content of 57.6% and encodes 49 open reading frames. The phage is genetically similar to P. syringae phages Pst_GM1 and Pst_GIL1, and the P. fluorescens phages WRT and KNP. According to electron microscopy and whole-genome sequence analysis, vB_Pci_PCMW57 should be classified as a Caudoviticetes, family Autographiviridae, subfamily Studiervirinae.

Conclusions

The complete phage genome was annotated, and the sequence identity of the virus with other Pseudomonas viruses was higher than 95%. To our knowledge, this is the first report of a bacteriophage infecting Pseudomonas cichorii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Silva Júnior TAF, Gioria R, Maringoni AC, Azevedo SM, Beriam LOS, Almeida IMG (2009) Gama de hospedeiros e reação de genótipos de tomateiro a Pseudomonas cichorii. Summa Phytopathol 35(2):127–131. https://doi.org/10.1590/S0100-54052009000200008

    Article  Google Scholar 

  2. Trantas EA, Sarris PF, Mpalantinaki EE, Pentari MG, Ververidis FN, Goumas DE (2013) A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis. Eur J Plant Pathol 137:477–493

    Article  Google Scholar 

  3. Timilsina S, Adkison H, Testen AL, Newberry EA, Miller SA, Paret ML, Minsavage GV, Goss EM, Jones JB, Vallad GE (2017) A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato. Phytopathol 107(11):1298–1304

    Article  CAS  Google Scholar 

  4. Patel N, Patel R, Wyenandt CA, Kobayashi DY (2021) First report of Pseudomonas cichorii causing bacterial leaf spot on Romaine Lettuce (Lactuca sativa var. Longifolia) and escarole (Cichorium endivia) in New Jersey. Plant Dis 105(12):4150

    Article  CAS  PubMed  Google Scholar 

  5. Garibaldi A, Gilardi G, Moretti C, Gullino ML (2009) First report of leaf spot caused by Pseudomonas cichorii on Coreopsis lanceolata in Italy. Plant Dis 93(9):967

    Article  CAS  PubMed  Google Scholar 

  6. Marques E, Borges RCF, Uesugi CH (2016) Identification and pathogenicity of Pseudomonas cichorii associated with a bacterial blight of gerbera in the Federal District. Hort bras 34:244–248. https://doi.org/10.1590/S0102-053620160000200015

    Article  CAS  Google Scholar 

  7. Swingle DB (1925) Centre rot of “French Endive” or wilt of chicory (Cichorium intybus L). Phytopathology 15:730

    Google Scholar 

  8. Alves FHNDS, Monteiro ALR, Pereira IC, da Silva JCF, Almeida RND, McTavish KJ et al (2022) Genomic variability and plasticity of Pseudomonas causing coffee leaf spots in Minas Gerais state, Brazil. Plant Pathol 71:934–948. https://doi.org/10.1111/ppa.13521

    Article  CAS  Google Scholar 

  9. Jang YW, Yoon Y, Maharjan R, Yi H, Jeong M, Hong SY, Lee MH, Kim SW, Kim JI, Yang JW (2022) First Report of Pseudomonas cichorii causing bacterial vein necrosis on Perilla plants [Perilla frutescens (L.) Britton.] In South Korea. Plant Dis 549. https://doi.org/10.1094/PDIS-01-22-0143-PDN

  10. Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894, 237AL. In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. J. Krieg & J. G. Holt. Baltimore: Wiliams & Wilkins

  11. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microb 146(10):2385–2394. https://doi.org/10.1099/00221287-146-10-2385

    Article  CAS  Google Scholar 

  12. Sambrook J, Russell DW (eds) (2001) Molecular Cloning, a Laboratory Manual, 3– edn. ed. Cold Spring Laboratory Press, Cold Spring Harbor, NY, EUA

    Google Scholar 

  13. Azeredo J, Sillankorva S, Pires DP (2014) Pseudomonas bacteriophage isolation and production. In: Filloux A, Ramos JL (eds) pseudomonas methods and protocols. Methods in molecular biology (methods and protocols), vol 1149. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_4.

    Google Scholar 

  14. Coil D, Jospin G, Darling AE (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Madan A (1999) CAP3: a DNA sequence Assembly Program. Genome Res 9:868–877. https://doi.org/10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  17. Meier-Kolthof JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  18. Meier-Kolthof JP, Göker M (2017) VICTOR: genome-based phylogeny and classifcation of prokaryotic viruses. Bioinform 33:3396–3404. https://doi.org/10.1093/bioinformatics/btx440

    Article  CAS  Google Scholar 

  19. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciccarelli FD, Doerks T, Creevey CJ et al (2006) Toward automatic reconstruction of a highly resolved tree of life. Science. 2006 Mar 3;311(5765):1283-7. https://doi.org/10.1126/science.1123061. Erratum in: Science. 2006 May 5;312(5774):697

  21. Mirzaei MK, Eriksson H, Kasuga K, Haggård-Ljungquist E, Nilsson AS (2014) Genomic, proteomic, morphological, and phylogenetic analyses of vB_EcoP_SU10, a Podoviridae phage with C3 morphology. PLoS ONE 9(12):e116294. https://doi.org/10.1371/journal.pone.0116294

    Article  CAS  PubMed Central  Google Scholar 

  22. Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75(3):423–433. https://doi.org/10.1128/MMBR.00014-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandes S, São-José C (2018) Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers. Viruses 10(8):396. https://doi.org/10.3390/v10080396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adriaenssens EM, Sullivan MB, Knezevic P et al (2020) Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 165:1253–1260

    Article  CAS  PubMed  Google Scholar 

  25. Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159(5):406–414. https://doi.org/10.1016/j.resmic.2008.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Author Alves MK has received a grant from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Alves MK designed the study, isolated and purified bacteriophages, isolated the phage DNA, wrote the manuscript. Souza WV performed the research, isolated and purified bacteriophages, isolated the phage DNA. Novello JCL contributed to the design of the work, isolated and purified bacteriophages, contributed new methods. Sillankorva S contributed to the design of the work, contributed new methods, performed the phage genome sequencing and bioinformatic analyses, analyzed the data. Labre C and Sommer RL perfomed transmission electron microscopy. Henriques JAP made substantial contributions to the design of the work, revised it critically. Ely MR made substantial contributions to the design of the work, revised it critically. All authors have read and approved the version to be published.

Corresponding author

Correspondence to Márcia Keller Alves.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.K., de Souza, W., Novello, J.C.L. et al. Complete genome sequence of a novel bacteriophage vB_Pci_PCMW57 infecting phytobacteria pseudomonas cichorii. Mol Biol Rep 50, 7105–7111 (2023). https://doi.org/10.1007/s11033-023-08552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08552-9

Keywords

Navigation