Skip to main content

Advertisement

Log in

Involvement of CXCL12/CXCR4 axis in colorectal cancer: a mini-review

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Migration of metastatic tumor cells is similar to the traffic of leukocytes and has been reported that can be guided by chemokines and their receptors, through the circulation to distant organs. The chemokine CXCL12 and its receptor CXCR4 play an essential role in hematopoietic stem cell homing and the activation of this axis supports malignant events. Binding of CXCL12 to CXCR4 activates signal transduction pathways, with broad effects on chemotaxis, cell proliferation, migration and gene expression. Thus, this axis serves as a bridge for tumor-stromal cell communication, creating a permissive microenvironment for tumor development, survival, angiogenesis and metastasis. Evidence suggests that this axis may be involved in the colorectal cancer (CRC) carcinogenesis. Therefore, we review emerging data and correlations between CXCL12/CXCR4 axis in CRC, the implications for cancer progression and possible therapeutic strategies that exploit this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Kerkar SP, Restifo NP (2012) Cellular constituents of Immune escape within the Tumor Microenvironment. Cancer Res 72(13):3125–3130. https://doi.org/10.1158/0008-5472.can-11-4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W (2016) CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35(7):816–826. https://doi.org/10.1038/onc.2015.139

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Sadanandam A, Singh R (2007) Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26(3):453–467. https://doi.org/10.1007/s10555-007-9068-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79(4):639–651. https://doi.org/10.1189/jlb.1105633

    Article  CAS  PubMed  Google Scholar 

  7. IARC: Colorectal Cancer Awareness Month 2022 (2022) Accessed

  8. Zou Q, Lei X, Xu A, Li Z, He Q, Huang X et al (2022) Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front Immunol 13:724139. https://doi.org/10.3389/fimmu.2022.724139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS (2022) Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Sem Cancer Biol 86(Pt 2):436–449. https://doi.org/10.1016/j.semcancer.2022.06.002

    Article  CAS  Google Scholar 

  10. Li M, Lu Y, Xu Y, Wang J, Zhang C, Du Y et al (2018) Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene 676:101–109. https://doi.org/10.1016/j.gene.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  11. Mushtaq M, Jensen L, Davidsson S, Grygoruk OV, Andrén O, Kashuba V et al (2018) The MRPS18-2 protein levels correlate with prostate tumor progression and it induces CXCR4-dependent migration of cancer cells. Sci Rep 8(1):2268. https://doi.org/10.1038/s41598-018-20765-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Truong D, Fiorelli R, Barrientos ES, Melendez EL, Sanai N, Mehta S et al (2019) A three-dimensional (3D) organotypic microfluidic model for glioma stem cells – vascular interactions. Biomaterials 198:63–77. https://doi.org/10.1016/j.biomaterials.2018.07.048

    Article  CAS  PubMed  Google Scholar 

  13. Zielińska KA, Katanaev VL (2020) The signaling duo CXCL12 and CXCR4: chemokine fuel for breast Cancer tumorigenesis. Cancers 12(10):3071

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoshuantari N, Heriyanto DS, Hutajulu SH, Kurnianda J, Ghozali A (2018) Clinicopathologic significance of CXCL12 and CXCR4 expressions in patients with colorectal Cancer. Gastroenterol Res Pract 2018:9613185. https://doi.org/10.1155/2018/9613185

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Cao H-B, Li W-J, Zhao L (2018) The CXCL12 (SDF-1)/CXCR4 chemokine axis: oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med 16(11):801–810. https://doi.org/10.1016/S1875-5364(18)30122-5

    Article  CAS  PubMed  Google Scholar 

  16. Khare T, Bissonnette M, Khare S (2021) CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: therapeutic target in preclinical and clinical studies. Int J Mol Sci 22(14):7371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ottaiano A, Scala S, Normanno N, Botti G, Tatangelo F, Di Mauro A et al (2020) Prognostic and predictive role of CXC chemokine receptor 4 in metastatic colorectal Cancer patients. Appl Immunohistochem Mol Morphology 28(10):755–760. https://doi.org/10.1097/pai.0000000000000828

    Article  CAS  Google Scholar 

  18. Miller MC, Mayo KH (2017) Chemokines from a structural perspective. Int J Mol Sci 18(10):2088

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bar-Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S et al (2016) G protein-coupled receptors in Cancer. Int J Mol Sci 17(8):1320

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bhusal RP, Foster SR, Stone MJ (2020) Structural basis of chemokine and receptor interactions: key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 29(2):420–432. https://doi.org/10.1002/pro.3744

    Article  CAS  PubMed  Google Scholar 

  21. Hughes CE, Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971. https://doi.org/10.1111/febs.14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S (2017) Chapter five - chemokine receptor signaling and the Hallmarks of Cancer. In: Galluzzi L (ed) International Review of Cell and Molecular Biology. Academic Press, pp 181–244

  23. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T et al (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28(3):495–500. https://doi.org/10.1006/geno.1995.1180

    Article  CAS  PubMed  Google Scholar 

  24. Janssens R, Struyf S, Proost P (2018) The unique structural and functional features of CXCL12. Cell Mol Immunol 15(4):299–311. https://doi.org/10.1038/cmi.2017.107

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Riese DJ, Shen J (2020) The role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.574667

  26. Goïta AA, Guenot D (2022) Colorectal Cancer: the contribution of CXCL12 and its receptors CXCR4 and CXCR7. Cancers 14(7):1810

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G et al (2021) CXCR4 and CXCR7 signaling pathways: a focus on the Cross-Talk between Cancer cells and Tumor Microenvironment. Front Oncol 11. https://doi.org/10.3389/fonc.2021.591386

  28. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in Cancer. Clin Cancer Res 16(11):2927–2931. https://doi.org/10.1158/1078-0432.ccr-09-2329

    Article  CAS  PubMed  Google Scholar 

  29. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280(42):35760–35766. https://doi.org/10.1074/jbc.M508234200

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Chen W, Shen J (2018) CXCR7 targeting and its Major Disease Relevance. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00641

  31. Gentilini A, Caligiuri A, Raggi C, Rombouts K, Pinzani M, Lori G et al (2019) CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochimica et Biophysica Acta (BBA) - molecular basis of Disease. 1865(9):2246–2256. https://doi.org/10.1016/j.bbadis.2019.04.020

  32. Li X, Wang X, Li Z, Zhang Z, Zhang Y (2019) Chemokine receptor 7 targets the vascular endothelial growth factor via the AKT/ERK pathway to regulate angiogenesis in colon cancer. Cancer Med 8(11):5327–5340. https://doi.org/10.1002/cam4.2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lounsbury N (2020) Advances in CXCR7 modulators. Pharmaceuticals 13(2):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song Z-Y, Wang F, Cui S-X, Gao Z-H, Qu X-J (2019) CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Oncogene 38(9):1560–1575. https://doi.org/10.1038/s41388-018-0519-2

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Q, Zhang P, Qin G, Ren F, Zheng Y, Qiao Y et al (2018) Role of CXCR7 as a common predictor for prognosis in solid tumors: a Meta-analysis. J Cancer 9(17):3138–3148. https://doi.org/10.7150/jca.25377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25(36):4986–4997. https://doi.org/10.1038/sj.onc.1209505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou W, Jiang Z, Liu N, Xu F, Wen P, Liu Y et al (2009) Down-regulation of CXCL12 mRNA expression by promoter hypermethylation and its association with metastatic progression in human breast carcinomas. J Cancer Res Clin Oncol 135(1):91–102. https://doi.org/10.1007/s00432-008-0435-x

    Article  CAS  PubMed  Google Scholar 

  38. Lin Y, He Z, Ye J, Liu Z, She X, Gao X et al (2020) Progress in understanding the IL-6/STAT3 pathway in Colorectal Cancer. OncoTargets and therapy 13:13023–13032. https://doi.org/10.2147/ott.s278013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian X, Xie G, Xiao H, Ding F, Bao W, Zhang M (2019) CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways. Cell & Bioscience 9(1):55. https://doi.org/10.1186/s13578-019-0315-x

    Article  CAS  Google Scholar 

  40. Tung S-Y, Chang S-F, Chou M-H, Huang W-S, Hsieh Y-Y, Shen C-H et al (2012) CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1. J Biomed Sci 19(1):91. https://doi.org/10.1186/1423-0127-19-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang W-S, Chen C-N, Sze C-I, Teng C-C (2013) Visfatin induces stromal cell-derived factor-1 expression by β1 integrin signaling in colorectal cancer cells. J Cell Physiol 228(5):1017–1024. https://doi.org/10.1002/jcp.24248

    Article  CAS  PubMed  Google Scholar 

  42. Liu W-T, Jing Y-Y, Yan F, Han Z-P, Lai F-B, Zeng J-X et al (2017) LPS-induced CXCR4-dependent migratory properties and a mesenchymal-like phenotype of colorectal cancer cells. Cell Adhes Migr 11(1):13–23. https://doi.org/10.1080/19336918.2015.1134404

    Article  CAS  Google Scholar 

  43. Hu T-h, Yao Y, Yu S, Han L-l, Wang W-j, Guo H et al (2014) SDF-1/CXCR4 promotes epithelial–mesenchymal transition and progression of colorectal cancer by activation of the Wnt/β-catenin signaling pathway. Cancer Lett 354(2):417–426. https://doi.org/10.1016/j.canlet.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  44. Bian J, Dannappel M, Wan C, Firestein R (2020) Transcriptional regulation of Wnt/β-Catenin pathway in Colorectal Cancer. Cells 9(9):2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng C, Ouyang Y, Lu N, Li N (2020) The NF-κB signaling pathway, the Microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.01387

  46. Romain B, Hachet-Haas M, Rohr S, Brigand C, Galzi J-L, Gaub M-P et al (2014) Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer. Mol Cancer 13(1):58. https://doi.org/10.1186/1476-4598-13-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Tannous BA, Poznansky MC, Chen H (2020) CXCR4 antagonist AMD3100 (plerixafor): from an impurity to a therapeutic agent. Pharmacol Res 159:105010. https://doi.org/10.1016/j.phrs.2020.105010

    Article  CAS  PubMed  Google Scholar 

  48. De Clercq E (2015) AMD3100/CXCR4 inhibitor. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00276

  49. Brave M, Farrell A, Ching Lin S, Ocheltree T, Pope Miksinski S, Lee SL et al (2010) FDA Review Summary: Mozobil in Combination with Granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the Peripheral blood for Collection and subsequent autologous transplantation. Oncology 78(3–4):282–288. https://doi.org/10.1159/000315736

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Wang J, Chen H (2021) CXCR4 antagonist AMD3100 (Plerixafor) modulates Immune responses in the Tumor Microenvironment. Int J Cancer Clin Res 8(1). https://doi.org/10.23937/2378-3419/1410144

  51. Fearon DT, Janowitz T (2021) AMD3100/Plerixafor overcomes immune inhibition by the CXCL12–KRT19 coating on pancreatic and colorectal cancer cells. Br J Cancer 125(2):149–151. https://doi.org/10.1038/s41416-021-01315-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Biasci D, Smoragiewicz M, Connell CM, Wang Z, Gao Y, Thaventhiran JED et al (2020) CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proceedings of the National Academy of Sciences. ;117(46):28960-70. doi: doi:https://doi.org/10.1073/pnas.2013644117

  53. O’Hara MH, Messersmith W, Kindler H, Zhang W, Pitou C, Szpurka AM et al (2020) Safety and Pharmacokinetics of CXCR4 peptide antagonist, LY2510924, in combination with Durvalumab in Advanced Refractory Solid Tumors. J Pancreat Cancer 6(1):21–31. https://doi.org/10.1089/pancan.2019.0018

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peng S-B, Zhang X, Paul D, Kays LM, Gough W, Stewart J et al (2015) Identification of LY2510924, a Novel cyclic peptide CXCR4 antagonist that exhibits Antitumor Activities in solid tumor and breast Cancer metastatic models. Mol Cancer Ther 14(2):480–490. https://doi.org/10.1158/1535-7163.mct-14-0850

    Article  CAS  PubMed  Google Scholar 

  55. Peng S-B, Van Horn RD, Yin T, Brown RM, Roell WC, Obungu VH et al (2017) Distinct mobilization of leukocytes and hematopoietic stem cells by CXCR4 peptide antagonist LY2510924 and monoclonal antibody LY2624587.Oncotarget. ; 8(55)

  56. Salgia R, Stille JR, Weaver RW, McCleod M, Hamid O, Polzer J et al (2017) A randomized phase II study of LY2510924 and carboplatin/etoposide versus carboplatin/etoposide in extensive-disease small cell lung cancer. Lung cancer (Amsterdam Netherlands) 105:7–13. https://doi.org/10.1016/j.lungcan.2016.12.020

    Article  PubMed  Google Scholar 

  57. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  58. Zboralski D, Hoehlig K, Eulberg D, Frömming A, Vater A (2017) Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 5(11):950–956. https://doi.org/10.1158/2326-6066.cir-16-0303

    Article  CAS  PubMed  Google Scholar 

  59. Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discovery Today 20(1):147–155. https://doi.org/10.1016/j.drudis.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  60. Suarez-Carmona M, Williams A, Schreiber J, Hohmann N, Pruefer U, Krauss J et al (2021) Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects. J Immunother Cancer 9(10):e002505. https://doi.org/10.1136/jitc-2021-002505

    Article  PubMed  PubMed Central  Google Scholar 

  61. D’Alterio C, Zannetti A, Trotta AM, Ieranò C, Napolitano M, Rea G et al (2020) New CXCR4 antagonist peptide R (pep R) improves Standard Therapy in Colorectal Cancer. Cancers 12(7):1952

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Brazilian Coordination of Superior Level Staff Improvement (CAPES), for the scholarship granted to MB.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Mayara Bocchi], [Nathália de Sousa Pereira], [Karen Brajão de Oliveira], [Marla Karine Amarante]; Literature search, data analysis and manuscript draft: [Mayara Bocchi]; Critical revision: [Nathália de Sousa Pereira], [Karen Brajão de Oliveira], [Marla Karine Amarante].

Corresponding author

Correspondence to Marla Karine Amarante.

Ethics declarations

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content discussed in this work.

Ethical approval

Not applicable.

Consent to participate

All authors have consented to participate of the manuscript production.

Consent for publication

All authors have read and approved the manuscript for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocchi, M., de Sousa Pereira, N., de Oliveira, K.B. et al. Involvement of CXCL12/CXCR4 axis in colorectal cancer: a mini-review. Mol Biol Rep 50, 6233–6239 (2023). https://doi.org/10.1007/s11033-023-08479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08479-1

Keywords

Navigation