Skip to main content

Advertisement

Log in

Identification of miR-192 target genes in porcine endometrial epithelial cells based on miRNA pull-down

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs (miRNAs)—a class of small endogenous non-coding RNAs—are widely involved in post-transcriptional gene regulation of numerous physiological processes. High-throughput sequencing revealed that the miR-192 expression level appeared to be significantly higher in the blood exosomes of sows at early gestation than that in non-pregnant sows. Furthermore, miR-192 was hypothesized to have a regulatory role in embryo implantation; however, the target genes involved in exerting the regulatory function of miR-192 required further elucidation.

Methods

In the present study, potential target genes of miR-192 in porcine endometrial epithelial cells (PEECs) were identified through biotin-labeled miRNA pull-down; functional and pathway enrichment analysis was performed via gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Bioinformatic analyses were concurrently used to predict the potential target genes associated with sow embryo implantation. In addition, double luciferase reporter vectors, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and Western blot were performed to verify the targeting and regulatory roles of the abovementioned target genes.

Results

A total of 1688 differentially expressed mRNAs were identified via miRNA pull-down. Through RT-qPCR, the accuracy of the sequencing data was verified. In the bioinformatics analysis, potential target genes of miR-192 appeared to form a dense inter-regulatory network and regulated multiple signaling pathways, such as metabolic pathways and the PI3K-Akt, MAPKs, and mTOR signaling pathways, that are relevant to the mammalian embryo implantation process. In addition, CSK (C-terminal Src kinase) and YY1 (Yin-Yang-1) were predicted to be potential candidates, and we validated that miR-192 directly targets and suppresses the expression of the CSK and YY1 genes.

Conclusion

We screened 1688 potential target genes of miR-192 were screened, and CSK and YY1 were identified as miR-192 target genes. The outcomes of the present study provide novel insights into the regulatory mechanism of porcine embryo implantation and the identification of miRNA target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avila-Bonilla RG, Salas-Benito JS (2022) Interactions of host miRNAs in the flavivirus 3′ UTR genome: from bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 12:976843. https://doi.org/10.3389/fcimb.2022.976843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  3. Lal A, Thomas MP, Altschuler G, Navarro F, O’Day E, Li XL, Concepcion C, Han YC, Thiery J, Rajani DK, Deutsch A, Hofmann O, Ventura A, Hide W, Lieberman J (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7(11):e1002363. https://doi.org/10.1371/journal.pgen.1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471. https://doi.org/10.1016/j.molcel.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Schnall-Levin M, Rissland OS, Johnston WK, Perrimon N, Bartel DP, Berger B (2011) Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res 21(9):1395–1403. https://doi.org/10.1101/gr.121210.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito Y, Inoue A, Seers T, Hato Y, Igarashi A, Toyama T, Taganov KD, Boldin MP, Asahara H (2017) Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci USA 114(15):3927–3932. https://doi.org/10.1073/pnas.1620019114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA (New York) 13(8):1198–1204. https://doi.org/10.1261/rna.563707

    Article  CAS  Google Scholar 

  8. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853. https://doi.org/10.1093/nar/gkr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awan HM, Shah A, Rashid F, Wei S, Chen L, Shan G (2018) Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression. RNA Biol 15(1):55–61. https://doi.org/10.1080/15476286.2017.1391441

    Article  PubMed  Google Scholar 

  10. Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods (San Diego) 43(2):162–165. https://doi.org/10.1016/j.ymeth.2007.04.007

    Article  CAS  Google Scholar 

  11. Ren FJ, Yao Y, Cai XY, Fang GY (2021) Emerging role of MiR-192–5p in human diseases. Front Pharmacol 12:614068. https://doi.org/10.3389/fphar.2021.614068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bian Q, Chen B, Weng B, Chu D, Tang X, Yan S, Yin Y, Ran M (2021) circBTBD7 promotes immature porcine sertoli cell growth through modulating miR-24-3p/MAPK7 axis to inactivate p38 MAPK signaling pathway. Int J Mol Sci 22(17):9385. https://doi.org/10.3390/ijms22179385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Xu S, Wang T, Xu K, Yin L, Li X, Sun R, Pu Y, Zhang J (2022) LincRNA-p21 promotes p21-mediated cell cycle arrest in benzene-induced hematotoxicity by sponging miRNA-17-5p. Environ Pollut (Barking) 296:118706. https://doi.org/10.1016/j.envpol.2021.118706

    Article  CAS  Google Scholar 

  14. Phatak P, Donahue JM (2017) Biotinylated micro-RNA pull down assay for identifying miRNA targets. Bio-protocol 7(9):e2253. https://doi.org/10.21769/BioProtoc.2253

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Zhang D, Xu Y, Qin Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z (2022) Selection of cashmere fineness functional genes by translatomics. Front Genet 12:775499. https://doi.org/10.3389/fgene.2021.775499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Duan X, Cao R, Liu HL, Cui XS, Kim NH, Rui R, Sun SC (2014) Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle (Georgetown) 13(21):3390–3403. https://doi.org/10.4161/15384101.2014.952967

    Article  CAS  Google Scholar 

  17. Jalali BM, Likszo P, Andronowska A, Skarzynski DJ (2018) Alterations in the distribution of actin and its binding proteins in the porcine endometrium during early pregnancy: possible role in epithelial remodeling and embryo adhesion. Theriogenology 116:17–27. https://doi.org/10.1016/j.theriogenology.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  18. Han LW, Shi Y, Paquette A, Wang L, Bammler TK, Mao Q (2021) Key hepatic metabolic pathways are altered in germ-free mice during pregnancy. PLoS ONE 16(3):e0248351. https://doi.org/10.1371/journal.pone.0248351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto Y, Maruyama T, Sakai N, Sakurai R, Shimizu A, Hamatani T, Masuda H, Uchida H, Sabe H, Yoshimura Y (2002) Expression and subcellular distribution of the active form of c-Src tyrosine kinase in differentiating human endometrial stromal cells. Mol Hum Reprod 8(12):1117–1124. https://doi.org/10.1093/molehr/8.12.1117

    Article  CAS  PubMed  Google Scholar 

  20. Nagashima T, Maruyama T, Uchida H, Kajitani T, Arase T, Ono M, Oda H, Kagami M, Masuda H, Nishikawa S, Asada H, Yoshimura Y (2008) Activation of SRC kinase and phosphorylation of signal transducer and activator of transcription-5 are required for decidual transformation of human endometrial stromal cells. Endocrinology 149(3):1227–1234. https://doi.org/10.1210/en.2007-1217

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Yang D, Zhu R, Dai F, Yuan M, Zhang L, Zheng Y, Liu S, Yang X, Cheng Y (2022) YY1/ITGA3 pathway may affect trophoblastic cells migration and invasion ability. J Reprod Immunol 153:103666. https://doi.org/10.1016/j.jri.2022.103666

    Article  CAS  PubMed  Google Scholar 

  22. Yang D, Ding J, Wang Y, Yuan M, Xian S, Zhang L, Liu S, Dai F, Wang F, Zheng Y, Zhao X, Liao S, Cheng Y (2020) YY1-PVT1 affects trophoblast invasion and adhesion by regulating mTOR pathway-mediated autophagy. J Cell Physiol 235(10):6637–6646. https://doi.org/10.1002/jcp.29560

    Article  CAS  PubMed  Google Scholar 

  23. Li R, Song XT, Guo SW, Zhao N, He M, He CQ, Ding NZ (2021) YY1 and RTCB in mouse uterine decidualization and embryo implantation. Reproduction (Cambridge) 162(6):461–472. https://doi.org/10.1530/REP-21-0281

    Article  CAS  Google Scholar 

  24. Akbalik ME, Ketani MA (2013) Expression of epidermal growth factor receptors and epidermal growth factor, amphiregulin and neuregulin in bovine uteroplacental tissues during gestation. Placenta 34(12):1232–1242. https://doi.org/10.1016/j.placenta.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  25. Monsivais D, Clementi C, Peng J, Fullerton PT Jr, Prunskaite-Hyyryläinen R, Vainio SJ, Matzuk MM (2017) BMP7 induces uterine receptivity and blastocyst attachment. Endocrinology 158(4):979–992. https://doi.org/10.1210/en.2016-1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khanbarari F, Ghasemi N, Vakili M, Samadi M (2021) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with unexplained recurrent pregnancy loss: a case-control study. Int J Reprod Biomed 19(10):873–880. https://doi.org/10.18502/ijrm.v19i10.9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hua R, Zhang X, Li W, Lian W, Liu Q, Gao D, Wang Y, Lei M (2020) Ssc-miR-21-5p regulates endometrial epithelial cell proliferation, apoptosis and migration via the PDCD4/AKT pathway. J Cell Sci 133(23):248898. https://doi.org/10.1242/jcs.248898

    Article  CAS  Google Scholar 

  28. Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J et al (2021) High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 13(13):995–1012. https://doi.org/10.2217/epi-2021-0055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adur MK, Hale BJ, Ross JW (2017) Detection of miRNA in mammalian oocytes and embryos. Methods Mol Biol (Clifton) 1605:63–81. https://doi.org/10.1007/978-1-4939-6988-3_5

    Article  CAS  Google Scholar 

  30. Kropp J, Khatib H (2015) Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci 98(9):6552–6563. https://doi.org/10.3168/jds.2015-9510

    Article  CAS  PubMed  Google Scholar 

  31. Ji D, Jiang L, Li Y (2018) MiR-192-5p suppresses the growth of bladder cancer cells via targeting Yin Yang 1. Hum Cell 31(3):210–219. https://doi.org/10.1007/s13577-018-0201-6

    Article  CAS  PubMed  Google Scholar 

  32. Edwards SM, Cunningham SA, Dunlop AL, Corwin EJ (2017) The maternal gut microbiome during pregnancy. Am J Matern Child Nurs 42(6):310–317. https://doi.org/10.1097/NMC.0000000000000372

    Article  Google Scholar 

  33. Johnson GA, Bazer FW, Seo H (2021) The early stages of implantation and placentation in the pig. Adv Anat Embryol Cell Biol 234:61–89. https://doi.org/10.1007/978-3-030-77360-1_5

    Article  PubMed  Google Scholar 

  34. Yang Y, Wang L, Chen C, Qi H, Baker PN, Liu X, Zhang H, Han TL (2020) Metabolic changes of maternal uterine fluid, uterus, and plasma during the peri-implantation period of early pregnancy in mice. Reprod Sci (Thousand Oaks) 27(2):488–502. https://doi.org/10.1007/s43032-019-00040-5

    Article  Google Scholar 

  35. Xu Y, Sui L, Qiu B, Yin X, Liu J, Zhang X (2019) ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am J Physiol Cell Physiol 316(4):C481–C491. https://doi.org/10.1152/ajpcell.00404.2018

    Article  CAS  PubMed  Google Scholar 

  36. Gupta K, Sirohi VK, Kumari S, Shukla V, Manohar M, Popli P, Dwivedi A (2018) Sorcin is involved during embryo implantation via activating VEGF/PI3K/Akt pathway in mice. J Mol Endocrinol 60(2):119–132. https://doi.org/10.1530/JME-17-0153

    Article  CAS  PubMed  Google Scholar 

  37. Lanekoff I, Cha J, Kyle JE, Dey SK, Laskin J, Burnum-Johnson KE (2016) Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site. Sci Rep 6:33023. https://doi.org/10.1038/srep33023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng X, Mao X, Huang Z, Wang F, Wu G, Qiao S (2013) Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction (Cambridge) 145(1):1–7. https://doi.org/10.1530/REP-12-0254

    Article  CAS  Google Scholar 

  39. Lu CW, Yabuuchi A, Chen L, Viswanathan S, Kim K, Daley GQ (2008) Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet 40(7):921–926. https://doi.org/10.1038/ng.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang JY, Jiang Y, Lin T, Kang JW, Lee JE, Jin DI (2015) Lysophosphatidic acid improves porcine oocyte maturation and embryo development in vitro. Mol Reprod Dev 82(1):66–77. https://doi.org/10.1002/mrd.22447

    Article  CAS  PubMed  Google Scholar 

  41. Johnson GA, Burghardt RC, Bazer FW (2014) Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep. J Anim Sci Biotechnol 5(1):56. https://doi.org/10.1186/2049-1891-5-56

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang CX, Chen F, Zhang WF, Zhang SH, Shi K, Song HQ, Wang YJ, Kim SW, Guan WT (2018) Leucine promotes the growth of fetal pigs by increasing protein synthesis through the mTOR signaling pathway in longissimus dorsi muscle at late gestation. J Agric Food Chem 66(15):3840–3849. https://doi.org/10.1021/acs.jafc.8b00330

    Article  CAS  PubMed  Google Scholar 

  43. Kiewisz J, Kaczmarek MM, Andronowska A, Blitek A, Ziecik AJ (2011) Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs—involvement of steroid hormones. Theriogenology 76(4):687–699. https://doi.org/10.1016/j.theriogenology.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  44. Jalali BM, Lukasik K, Witek K, Baclawska A, Skarzynski DJ (2020) Changes in the expression and distribution of junction and polarity proteins in the porcine endometrium during early pregnancy period. Theriogenology 142:196–206. https://doi.org/10.1016/j.theriogenology.2019.09.041

    Article  CAS  PubMed  Google Scholar 

  45. Kwon SG, Hwang JH, Park DH, Kim TW, Kang DG, Kang KH, Kim IS, Park HC, Na CS, Ha J, Kim CW (2016) Identification of differentially expressed genes associated with litter size in berkshire pig placenta. PLoS ONE 11(4):e0153311. https://doi.org/10.1371/journal.pone.0153311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng L, Chen Y, Ye L, Jiao W, Song H, Mei H, Li D, Yang F, Li H, Huang K, Tong Q (2017) miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1-facilitated MMP-14 expression. Sci Rep 7(1):8967. https://doi.org/10.1038/s41598-017-09271-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian FJ, Cheng YX, Li XC, Wang F, Qin CM, Ma XL, Yang J, Lin Y (2016) The YY1/MMP2 axis promotes trophoblast invasion at the maternal-fetal interface. J Pathol 239(1):36–47. https://doi.org/10.1002/path.4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu LP, Gong YB (2018) LncRNA-TCL6 promotes early abortion and inhibits placenta implantation via the EGFR pathway. Eur Rev Med Pharmacol Sci 22(21):7105–7112. https://doi.org/10.26355/eurrev_201811_16242

    Article  PubMed  Google Scholar 

  49. Donohoe ME, Zhang X, McGinnis L, Biggers J, Li E, Shi Y (1999) Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol 19(10):7237–7244. https://doi.org/10.1128/MCB.19.10.7237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roskoski R (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324(4):1155–1164. https://doi.org/10.1016/j.bbrc.2004.09.171

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 31960645).

Author information

Authors and Affiliations

Authors

Contributions

TH guided this work and reviewed the article. QL finished the article. RG, FH, YS, SL, XC, MQ and ML, help to finish the experiment. YC, SX, and XS collected relevant information. QL modified the figures. The final draft was read and approved by all of the writers.

Corresponding author

Correspondence to Tao Huang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This research does not contain any studies with human or animal participants by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gao, R., Chen, Y. et al. Identification of miR-192 target genes in porcine endometrial epithelial cells based on miRNA pull-down. Mol Biol Rep 50, 4273–4284 (2023). https://doi.org/10.1007/s11033-023-08349-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08349-w

Keywords

Navigation