Skip to main content

Advertisement

Log in

Stem cells and diabetic retinopathy: From models to treatment

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Cai X, McGinnis JF (2016) Diabetic retinopathy: animal models, therapies, and perspectives. J Diabetes Res. https://doi.org/10.1155/2016/3789217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diab Rep. https://doi.org/10.1007/s11892-017-0913-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  4. Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186

    Article  PubMed  Google Scholar 

  6. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376(9735):124–136

    Article  PubMed  Google Scholar 

  7. Lai AKW, Lo ACY (2013) Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. https://doi.org/10.1155/2013/106594

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oshitari T (2022) Diabetic retinopathy: neurovascular disease requiring neuroprotective and regenerative therapies. Neural Regen Res 17:795–796. https://doi.org/10.4103/1673-5374.322457

    Article  CAS  PubMed  Google Scholar 

  9. Gaddam S, Periasamy R, Gangaraju R (2019) Adult stem cell therapeutics in diabetic retinopathy. Int J Mol Sci 20(19):4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wakabayashi Y, Usui Y, Okunuki Y et al (2010) Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina 30:339–344. https://doi.org/10.1097/IAE.0b013e3181bd2f44

    Article  PubMed  Google Scholar 

  11. Ansari P, Tabasumma N, Snigdha NN et al (2022) Diabetic retinopathy: an overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 3:159–175. https://doi.org/10.3390/diabetology3010011

    Article  Google Scholar 

  12. Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225. https://doi.org/10.2174/09298673113209990022

    Article  CAS  PubMed  Google Scholar 

  13. Roy S, Amin S, Roy S (2016) Retinal fibrosis in diabetic retinopathy. Exp Eye Res 142:71–75. https://doi.org/10.1016/j.exer.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antonetti DA, Barber AJ, Hollinger LA et al (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467. https://doi.org/10.1074/jbc.274.33.23463

    Article  CAS  PubMed  Google Scholar 

  15. Tomita Y, Lee D, Tsubota K et al (2021) Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med. https://doi.org/10.3390/jcm10204666

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rangasamy S, Srinivasan R, Maestas J et al (2011) A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Investig Ophthalmol Vis Sci 52:3784–3791. https://doi.org/10.1167/iovs.10-6386

    Article  CAS  Google Scholar 

  17. Levene R, Horton G, Gorn R (1966) Flat-mount studies of human retinal vessels. Am J Ophthalmol 61:283–289. https://doi.org/10.1016/0002-9394(66)90285-6

    Article  CAS  PubMed  Google Scholar 

  18. Li G, Tang J, Du Y et al (2011) Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Mol Vis 17:3156–3165

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Howell SJ, Mekhail MN, Azem R et al (2013) Degeneration of retinal ganglion cells in diabetic dogs and mice: Relationship to glycemic control and retinal capillary degeneration. Mol Vis 19:1413–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Joussen AM, Doehmen S, Le ML et al (2009) TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis 15:1418–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang X, Yang L, Luo Y (2015) Animal models of diabetic retinopathy. Curr Eye Res 40:761–771. https://doi.org/10.3109/02713683.2014.964415

    Article  CAS  PubMed  Google Scholar 

  22. Lyon H, Shome A, Rupenthal ID et al (2021) Tonabersat inhibits connexin43 hemichannel opening and inflammasome activation in an in vitro retinal epithelial cell model of diabetic retinopathy. Int J Mol Sci 22:1–12. https://doi.org/10.3390/ijms22010298

    Article  CAS  Google Scholar 

  23. Wang L, Liu WX, Huang XG (2020) MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy. Exp Mol Pathol 116:104488. https://doi.org/10.1016/j.yexmp.2020.104488

    Article  CAS  PubMed  Google Scholar 

  24. Toro MD, Nowomiejska K, Avitabile T et al (2019) Effect of resveratrol on in vitro and in vivo models of diabetic retinophathy: a systematic review. Int J Mol Sci. https://doi.org/10.3390/ijms20143503

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giurdanella G, Lupo G, Gennuso F et al (2020) Activation of the VEGF-A/ERK/PLA2 axis mediates early retinal endothelial cell damage induced by high glucose: new insight from an in vitro model of diabetic retinopathy. Int J Mol Sci 21:1–19. https://doi.org/10.3390/ijms21207528

    Article  CAS  Google Scholar 

  26. Yang S, Zhang J, Chen L (2020) The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 132:110818. https://doi.org/10.1016/j.biopha.2020.110818

    Article  CAS  PubMed  Google Scholar 

  27. Kinuthia UM, Wolf A, Langmann T (2020) Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 11:1–10. https://doi.org/10.3389/fimmu.2020.564077

    Article  CAS  Google Scholar 

  28. Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. https://doi.org/10.1007/s00592-012-0390-5

    Article  PubMed  Google Scholar 

  29. Eyre JJ, Williams RL, Levis HJ (2020) A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro. Exp Eye Res 201:108293. https://doi.org/10.1016/j.exer.2020.108293

    Article  CAS  PubMed  Google Scholar 

  30. Kumar R, Harris-Hooker S, Kumar R, Sanford G (2011) Co-culture of retinal and endothelial cells results in the modulation of genes critical to retinal neovascularization. Vasc Cell. https://doi.org/10.1186/2045-824X-3-27

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ragelle H, Goncalves A, Kustermann S et al (2020) Organ-on-a-chip technologies for advanced blood-retinal barrier models. J Ocul Pharmacol Ther 36:30–41. https://doi.org/10.1089/jop.2019.0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schnichels S, Paquet-Durand F, Löscher M et al (2021) Retina in a dish: cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2020.100880

    Article  PubMed  Google Scholar 

  33. Tan F, Ding C, Sun X et al (2022) Establishment of a human induced pluripotent stem cell line (CSUASOi008-A) from a type 2 diabetic patient with retinopathy. Stem Cell Res 59:102637. https://doi.org/10.1016/j.scr.2021.102637

    Article  CAS  Google Scholar 

  34. Couturier A, Blot G, Vignaud L et al (2021) Reproducing diabetic retinopathy features using newly developed human induced-pluripotent stem cell-derived retinal Müller glial cells. Glia 69:1679–1693. https://doi.org/10.1002/glia.23983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin ZB, Gao ML, Deng WL et al (2019) Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 69:38–56. https://doi.org/10.1016/j.preteyeres.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  36. Llonch S, Carido M, Ader M (2018) Organoid technology for retinal repair. Dev Biol 433:132–143. https://doi.org/10.1016/j.ydbio.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  37. Tsakmaki A, Fonseca Pedro P, Bewick GA (2020) Diabetes through a 3D lens: organoid models. Diabetologia 63:1093–1102. https://doi.org/10.1007/s00125-020-05126-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deschler EK, Sun JK, Silva PS (2014) Side-effects and complications of laser treatment in diabetic retinal disease. Semin Ophthalmol 29:290–300. https://doi.org/10.3109/08820538.2014.959198

    Article  PubMed  Google Scholar 

  39. Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. https://doi.org/10.3390/ijms19061816

    Article  PubMed  PubMed Central  Google Scholar 

  40. Van Geest RJ, Lesnik-Oberstein SY, Tan HS et al (2012) A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 96:587–590. https://doi.org/10.1136/bjophthalmol-2011-301005

    Article  PubMed  Google Scholar 

  41. Kuiper EJ, Van Nieuwenhoven FA, de Smet MD et al (2008) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS ONE 3:1–7. https://doi.org/10.1371/journal.pone.0002675

    Article  CAS  Google Scholar 

  42. Silva M, Peng T, Zhao X et al (2021) Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 173:439–460. https://doi.org/10.1016/j.addr.2021.04.007

    Article  CAS  PubMed  Google Scholar 

  43. Kuiper EJ, Van Zijderveld R, Roestenberg P et al (2008) Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem 56:785–792. https://doi.org/10.1369/jhc.2008.950980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park TS, Bhutto I, Zimmerlin L et al (2014) Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129:359–372. https://doi.org/10.1161/CIRCULATIONAHA.113.003000

    Article  PubMed  Google Scholar 

  45. Tucker BA, Park IH, Qi SD et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0018992

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mendel TA, Clabough EBD, Kao DS et al (2013) Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE 8:e65691. https://doi.org/10.1371/journal.pone.0065691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caballero S, Sengupta N, Afzal A et al (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967. https://doi.org/10.2337/db06-1254

    Article  CAS  PubMed  Google Scholar 

  48. Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276. https://doi.org/10.1172/JCI29683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mead B, Berry M, Logan A et al (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res 14(3):243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rajashekhar G, Ramadan A, Abburi C et al (2014) Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE 9:e84671. https://doi.org/10.1371/journal.pone.0084671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Z, Li K, Yan X et al (2010) Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Arch Clin Exp Ophthalmol 248:1415–1422. https://doi.org/10.1007/s00417-010-1384-z

    Article  Google Scholar 

  52. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230

    Article  CAS  PubMed  Google Scholar 

  53. Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P (2014) Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 92(2):e86–e95

    Article  PubMed  Google Scholar 

  54. Griffin TP, Martin WP, Islam N et al (2016) The promise of mesenchymal stem cell therapy for diabetic kidney disease. Curr Diab Rep 16:1–14

    Article  CAS  Google Scholar 

  55. Doeppner TR, Herz J, Görgens A et al (2015) Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 4:1131–1143. https://doi.org/10.5966/sctm.2015-0078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dr O, Tg W, Rk J et al (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5:754–763

    Article  Google Scholar 

  57. Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19:1885–1893. https://doi.org/10.1089/scd.2010.0093

    Article  CAS  PubMed  Google Scholar 

  58. Ezquer F, Giraud-Billoud M, Carpio D et al (2015) Proregenerative microenvironment triggered by donor mesenchymal stem cells preserves renal function and structure in mice with severe diabetes mellitus. Biomed Res Int. https://doi.org/10.1155/2015/164703

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ren M, Yang S, Li J et al (2013) Ginkgo biloba L. extract enhances the effectiveness of syngeneic bone marrow mesenchymal stem cells in lowering blood glucose levels and reversing oxidative stress. Endocrine 43:360–369. https://doi.org/10.1007/s12020-012-9745-5

    Article  CAS  PubMed  Google Scholar 

  60. Sukpat S, Isarasena N, Wongphoom J, Patumraj S (2013) Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress. Biomed Res Int. https://doi.org/10.1155/2013/459196

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ezquer M, Urzua CA, Montecino S et al (2016) Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 7:1–17. https://doi.org/10.1186/s13287-016-0299-y

    Article  CAS  Google Scholar 

  62. Gu C, Zhang H, Gao Y (2021) Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1. J Cell Physiol 236:5036–5051. https://doi.org/10.1002/jcp.30213

    Article  CAS  PubMed  Google Scholar 

  63. Park SS, Moisseiev E, Bauer G et al (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2016.10.002

    Article  PubMed  Google Scholar 

  64. Park SS, Caballero S, Bauer G et al (2012) Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34+ cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 53:986–994. https://doi.org/10.1167/iovs.11-8833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhatwadekar AD, Guerin EP, Jarajapu YPR et al (2010) Transient inhibition of transforming growth factor-β1 in human diabetic CD34+ cells enhances vascular reparative functions. Diabetes. https://doi.org/10.2337/db10-0287

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moisseiev E, Smit-McBride Z, Oltjen S et al (2016) Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Investig Ophthalmol Vis Sci 57:4125–4135. https://doi.org/10.1167/iovs.16-19252

    Article  CAS  Google Scholar 

  67. Yazdanyar A, Zhang P, Dolf C et al (2020) Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Exp Eye Res 190:107865. https://doi.org/10.1016/j.exer.2019.107865

    Article  CAS  PubMed  Google Scholar 

  68. Cerman E, Akkoc T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, Subasi C, Karaoz E (2016) Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS ONE 11:e0156495

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adak S, Magdalene D, Deshmukh S et al (2021) A review on mesenchymal stem cells for treatment of retinal diseases. Stem Cell Rev Rep 17:1154–1173. https://doi.org/10.1007/s12015-020-10090-x

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tzameret A, Sher I, Belkin M et al (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144. https://doi.org/10.1016/j.exer.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  71. Zhang W, Wang Y, Kong J et al (2017) Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-00298-2

    Article  CAS  Google Scholar 

  72. Mead B, Logan A, Berry M et al (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556. https://doi.org/10.1167/iovs.13-13045

    Article  CAS  PubMed  Google Scholar 

  73. Chen S, Zhang W, Wang JM et al (2016) Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 9:41. https://doi.org/10.18240/ijo.2016.01.07

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li W, Jin LY, Cui YB, Xie N (2021) Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17–3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Int Immunopharmacol 90:107010. https://doi.org/10.1016/j.intimp.2020.107010

    Article  CAS  PubMed  Google Scholar 

  75. Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D et al (2018) Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-34527-z

    Article  CAS  Google Scholar 

  76. Reid E, Guduric-Fuchs J, O’Neill CL et al (2018) Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies. Stem Cells Transl Med 7:59–67. https://doi.org/10.1002/sctm.17-0187

    Article  CAS  PubMed  Google Scholar 

  77. Faris P, Negri S, Perna A et al (2020) Therapeutic potential of endothelial colony-forming cells in ischemic disease: Strategies to improve their regenerative efficacy. Int J Mol Sci 21(19):7406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dellett M, Brown ED, Guduric-Fuchs J et al (2017) MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J Cell Mol Med 21:3405–3419. https://doi.org/10.1111/jcmm.13251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim KS, Park JM, Kong TH et al (2016) Retinal angiogenesis effects of TGF-β1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transplant 25:1145–1157. https://doi.org/10.3727/096368915X688263

    Article  PubMed  Google Scholar 

  80. Sung Y, Lee SM, Park M et al (2020) Treatment of traumatic optic neuropathy using human placenta-derived mesenchymal stem cells in Asian patients. Regen Med 15:2163–2179. https://doi.org/10.2217/rme-2020-0044

    Article  CAS  PubMed  Google Scholar 

  81. Kim JY, Park S, Park SH et al (2021) Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogenesis in retinal cells. Lab Invest 101:51–69. https://doi.org/10.1038/s41374-020-0470-z

    Article  CAS  PubMed  Google Scholar 

  82. Cho H, Macklin BL, Lin YY et al (2020) IPSC-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight. https://doi.org/10.1172/jci.insight.131828

    Article  PubMed  PubMed Central  Google Scholar 

  83. Prasain N, Lee MR, Vemula S et al (2014) Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol 32:1151–1157. https://doi.org/10.1038/nbt.3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lechner J, Medina RJ, Lois N, Stitt AW (2022) Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 13:1–16. https://doi.org/10.1186/s13287-022-03073-x

    Article  Google Scholar 

  85. Barnea-Cramer AO, Wang W, Lu SJ et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:1–15. https://doi.org/10.1038/srep29784

    Article  CAS  Google Scholar 

  86. Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835. https://doi.org/10.1002/stem.635

    Article  CAS  PubMed  Google Scholar 

  87. Rajashekhar G, Traktuev DO, Roell WC et al (2008) IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26:2674–2681. https://doi.org/10.1634/stemcells.2008-0277

    Article  PubMed  Google Scholar 

  88. Rajashekhar G (2014) Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2014.00059

    Article  PubMed  Google Scholar 

  89. Elshaer SL, Evans W, Pentecost M et al (2018) Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res Ther 9:1–18. https://doi.org/10.1186/s13287-018-1059-y

    Article  CAS  Google Scholar 

  90. Fiori A, Terlizzi V, Kremer H et al (2018) Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology. https://doi.org/10.1016/j.imbio.2018.01.001

    Article  PubMed  Google Scholar 

  91. Yan Z, Zhuansun Y, Liu G et al (2015) Mesenchymal stem cells suppress T cells by inducing apoptosis and through PD-1/B7-H1 interactions. Immunol Lett 162:248–255. https://doi.org/10.1016/j.imlet.2014.09.013

    Article  CAS  Google Scholar 

  92. Yang SH, Park MJ, Yoon IH et al (2009) Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 41:315–324. https://doi.org/10.3858/emm.2009.41.5.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288

    Article  CAS  PubMed  Google Scholar 

  94. Li XJ, Li CY, Bai D, Leng Y (2021) Insights into stem cell therapy for diabetic retinopathy: a bibliometric and visual analysis. Neural Regen Res 16:172–178. https://doi.org/10.4103/1673-5374.286974

    Article  PubMed  Google Scholar 

  95. Gu X, Yu X, Zhao C et al (2018) Efficacy and Safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem 49:40–52. https://doi.org/10.1159/000492838

    Article  CAS  PubMed  Google Scholar 

  96. Tassoni A, Gutteridge A, Barber AC et al (2015) Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells 33:3006–3016. https://doi.org/10.1002/stem.2095

    Article  CAS  PubMed  Google Scholar 

  97. Kuriyan AE, Albini TA, Townsend JH et al (2017) Vision loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med 376:1047–1053. https://doi.org/10.1056/nejmoa1609583

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gu Z, Wen X, Yang N, License RF (2022) Effects of intravitreal injection of hypoxia-induced umbilical cord mesenchymal stem cell exosomes on diabetic retinopathy. Res Sq. https://doi.org/10.21203/rs.3.rs-994654/v2

  99. Cheung KW, Yazdanyar A, Dolf C et al (2021) Analysis of the retinal capillary plexus layers in a murine model with diabetic retinopathy: effect of intravitreal injection of human CD34+ bone marrow stem cells. Ann Transl Med 9:12073–21273. https://doi.org/10.2137/atm-20-3930

    Article  Google Scholar 

  100. Ding SSL, Subbiah SK, Khan MSA et al (2019) Empowering mesenchymal stem cells for ocular degenerative disorders. Int J Mol Sci. https://doi.org/10.3390/ijms20071784

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BS: Writing—original draft, review & editing. AR: Writing—review & editing. EB: Idea development and Manuscript revision. OSS: Manuscript revision and figure preparation. All the authors read and approved the final review draft.

Corresponding author

Correspondence to Om Saswat Sahoo.

Ethics declarations

Conflict of interest

There are no conflicts of interests among the authors.

Ethical approval

Not Applicable.

Consent to participations

Not Applicable.

Consent for publications

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B., Roy, A., Beltramo, E. et al. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 50, 4517–4526 (2023). https://doi.org/10.1007/s11033-023-08337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08337-0

Keywords

Navigation