Skip to main content

Advertisement

Log in

The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Geminiviruses are among the most threatening emerging plant viruses, accountable for a huge loss to agricultural production worldwide. These viruses have been responsible for some serious outbreaks during the last few decades across different parts of the world. Sincere efforts have been made to regulate the disease incidence by incorporating a multi-dimensional approach, and this process has been facilitated greatly by the advent of molecular techniques. But, the mixed infection due to the polyphagous nature of vectors results in viral recombination followed by the emergence of novel viral strains which thus renders the existing mitigation strategies ineffective. Hence, a multifaceted insight into the molecular mechanism of the disease is really needed to understand the regulatory points; much has been done in this direction during the last few years. The present review aims to explore all the latest developments made so far and to organize the information in a comprehensive manner so that some novel hypotheses for controlling the disease may be generated.

Methods and Results

Starting with the background information, diverse genera of geminiviruses are listed along with their pathological and economic impacts. A comprehensive and detailed mechanism of infection is elaborated to study the interactions between vector, host, and virus at different stages in the life cycle of geminiviruses. Finally, an effort isalso made to analyze the progress made at the molecular level for the development of various mitigation strategies and suggest more effective and better approaches for controlling the disease.

Conclusion

The study has provided a thorough understanding of molecular mechanism of geminivirus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

AmiRNA:

Artificial micro-RNA

AYVV:

Azeratum yellow vein virus

AZP:

Artificial zinc finger protein

BCTV:

Beet curly top virus

BeYDV:

Bean yellow dwarf virus

BGMV:

Bean golden mosaic virus

BSCTV:

Beet severe curly top virus

CaLCuV:

Cabbage leaf curl virus

CLCuV:

Cotton leaf curl virus

CLCuMuV:

Cotton leaf curl Multan virus

CLE:

Conserved late element

CMGs:

Cassava mosaic geminiviruses

CMV:

Cassava mosaic virus

CP:

Coat protein

CRISPR-Cas9:

Clustered repeated interspersed short palindromic repeats-CRISPR associated protein 9

dsDNA:

Double stranded DNA

ICMV:

Indian cassava mosaic virus

ICTV:

International Committee on Taxonomy of Viruses

IR:

Intergenic region

MCM2:

Minichromosome maintenance protein

MeMV:

Merremia mosaic virus

miRNA:

Micro-RNA

MP:

Movement protein

MSV:

Maize sreak virus

MYMIV:

Mungbean yellow mosaic India virus

NES:

Nuclear export signal

NIG:

NSP-interacting GTPase

NISP:

NSP-interacting syntaxin domain-containing protein

NLS:

Nuclear localizing signal

NPC:

Nuclear pore complex

NSP:

Nuclear shuttle protein

nts.:

Nucleotides

ORFs:

Open reading frames

ori:

Origin of replication

PCNA:

Proliferating cell nuclear antigen

PDR:

Pathogen derived resistance

RAD:

DNA repair protein

RBR:

Retinoblastoma related protein

RCR:

Rolling circle replication

REn:

Replication enhancer

Rep:

Replication

RFC:

Replication factor C

RNAi:

RNA interference

RPA:

Replication protein A

siRNA:

Small interfering RNA

SLCMV:

Shri Lankan cassava mosaic virus

ssDNA:

Single stranded DNA

ssRNA:

Single stranded RNA

TALEs:

Transcription activator like effectors

TbCSV:

Tobacco curly shoot virus

TMV:

Tomato mottle virus

ToCMoV:

Tomato chlorotic mottle virus

TYLCV:

Tomato yellow leaf curl virus

TrAP:

Transcriptional activator protein

TYCYnV:

Tomato leaf curl Yunnan virus

TYLCCNV:

Tomato yellow leaf curl China virus

TYLCSV:

Tomato yellow leaf curl Sardinia virus

vDNA:

Viral DNA

VIGE:

Virus inducible gene editing

VIGS:

Virus induced gene silencing

ZFN:

Zinc finger nuclease

References

  1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3(3):430–439

    Article  PubMed  Google Scholar 

  2. Kashyap B, Kumar R (2021) Sensing methodologies in agriculture for monitoring biotic stress in plants due to pathogens and pests. Inventions 6(2):29

    Article  Google Scholar 

  3. Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jones RAC (2021) Global plant virus disease pandemics and epidemics. Plants (Basel) 10(2):233

    Article  CAS  PubMed  Google Scholar 

  5. Jones RAC, Naidu RA (2019) Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol 6(1):387–409

    Article  CAS  PubMed  Google Scholar 

  6. Pandey V, Srivastava A, Gaur RK (2021) Begomovirus: a curse for the agricultural crops. Arch Phytopathol Plant Prot 54(15–16):949–978

    Article  CAS  Google Scholar 

  7. Ertunc F (2020) Emerging plant viruses. Emerging and reemerging viral pathogens. Academic Press, pp 1041–1062

  8. Shuja NN, Tahir M (2019) Molecular characterization of cotton infecting Begomovirus(es) and DNA satellites associated with Cotton leaf curl disease in Pakistan. EC Microbiol 15(7):545–560

    Google Scholar 

  9. Kumar A, Khan JA (2019) Geminivirus resistance strategies. In: Geminiviruses. Springer, Cham, pp 197–218

  10. Takahashi H, Fukuhara T, Kitazawa H, Kormelink R (2019) Virus latency and the impact on plants. Front Microbiol 10:2764

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta N, Reddy K, Bhattacharyya D, Chakraborty S (2021) Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 18(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiumenti M, Greco C, De Stradis A et al (2021) Olea europaea geminivirus: a novel bipartite geminivirid infecting olive trees. Viruses 13(3):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lal A, Kim YH, Vo TTB et al (2021) Identification of a novel geminivirus in Fraxinus rhynchophylla in Korea. Viruses 13(12):2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi H, Jo Y, Hong J et al (2022) Complete genome sequence of a novel monopartite Mastrevirus, soybean geminivirus B, isolated from soybean (Glycine max (L.) Merrill). Plants (Basel) 11(13):1768

    Article  CAS  PubMed  Google Scholar 

  15. Du M, Wang Y, Chen C et al (2022) Molecular characterization and pathogenicity of a novel soybean-infecting monopartite geminivirus in China. Viruses 14(2):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Claverie S, Bernardo P, Kraberger S et al (2018) From spatial metagenomics to molecular characterization of plant viruses: a geminivirus case study. Adv Virus Res 101:55–83

    Article  PubMed  Google Scholar 

  17. Fiallo-Olivé E, Lett JM, Martin DP et al (2021) ICTV virus taxonomy profile: Geminiviridae 2021. J Gen Virol 102(12):001696

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roumagnac P, Lett JM, Fiallo-Olivé E et al (2022) Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus. Arch Virol 167(2):695–710

    Article  CAS  PubMed  Google Scholar 

  19. Kapoor P, Rani R, Rathi AS (2019) Gemini viruses-emerging threat to crops. J Pharmacogn Phytochem 8(1):2006–2012

    Google Scholar 

  20. Shahid MR, Farooq J, Mahmood A, Iqbal MS, Mahmood K, Abbas HG (2014) Economic yield, fiber trait and sucking insect pest incidence on advanced genotypes of cotton in Pakistan. Cercet Agron Mold 48(1):51–56

    Article  Google Scholar 

  21. Mann RS (2011) Bemisia tabaci interaction with cotton leaf curl virus.  In: Thompson W (ed) The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Dordrecht, pp 69–88

  22. Hesketh EL, Saunders K, Fisher C et al (2018) The 3.3 Å structure of a plant geminivirus using cryo-EM. Nat Commun 9(1):2369

    Article  PubMed  PubMed Central  Google Scholar 

  23. Monga D (2014) Status of cotton leaf curls virus disease in India. In: 6th meeting of Asian Cotton Research and Development Network held in Dhaka, Bangladesh, pp 18–20

  24. Varsani A, Navas-Castillo J, Moriones E et al (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159(8):2193–2203

    Article  CAS  PubMed  Google Scholar 

  25. Rashed A, Feng X, Prager SM, Porter LD, Knodel JJ, Karasev A, Eigenbrode SD (2018) Vector-borne viruses of pulse crops, with a particular emphasis on North American cropping system. Ann Entomol Soc Am 111(4):205–227

    Article  CAS  Google Scholar 

  26. Kumar RV (2019) Classification, taxonomy and gene function of geminiviruses and their satellites. In: Geminiviruses. Springer, Cham, pp 1–16

  27. Tahan V, Heydarnejad J, Jafarpour B (2020) Characterization of Beet curly top Iran virus infecting eggplant and pepper in north-eastern Iran. Indian Phytopathol 73(3):577–581

    Article  Google Scholar 

  28. Subiastuti AS, Hartono S, Daryono BS (2019) Detection and identification of Begomovirus infecting Cucurbitaceae and Solanaceae in Yogyakarta, Indonesia. Biodivers J Biol Divers 20(3):738–744

    Article  Google Scholar 

  29. Charoenvilaisiri S, Seepiban C, Phironrit N et al (2017) Occurrence and distribution of begomoviruses infecting tomatoes, peppers and cucurbits in Thailand. Crop Prot 127:104948

    Article  Google Scholar 

  30. Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S (2022) Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 30(2):170–184

    Article  CAS  PubMed  Google Scholar 

  31. Varsani A, Roumagnac P, Fuchs M et al (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162(6):1819–1831

    Article  CAS  PubMed  Google Scholar 

  32. Ryckebusch F, Sauvion N, Granier M, Roumagnac P, Peterschmitt M (2020) Alfalfa leaf curl virus is transmitted by Aphis craccivora in a highly specific circulative manner. Virology 546:98–108

    Article  CAS  PubMed  Google Scholar 

  33. Guo ZP, Zhang JX, Wang ML et al (2020) First report of alfalfa leaf curl virus infecting alfalfa (Medicago sativa) in China. Plant Dis 104(3):1001–1001

    Article  Google Scholar 

  34. Venkataravanappa V, Sonavane P, Reddy CNL, Reddy MK (2021) Characterization of novel French bean leaf curl virus and betasatellite associated with leaf curl disease of French bean (Phaseolus vulgaris L.). J Gen Plant Pathol 87(2):94–100

    Article  CAS  Google Scholar 

  35. Ryckebusch F, Sauvion N, Granier M, Peterschmitt M (2022) Spotlight on the recently discovered aphid-transmitted geminiviruses. In: Geminivirus: detection, diagnosis and management. Academic Press, Cambridge, pp 95–105

  36. Peinado SA Jr, Chen LF, Gilbertson R, Creamer R (2018) Evidence of curtovirus competition and synergy in co-infected plant hosts. Afr J Microbiol Res 12(10):254–262

    Article  Google Scholar 

  37. Jiménez RC (2019) Utilizing wild Capsicum spp. germplasm for breeding resistance to beet curly top virus (Genus Curtovirus, Family: Geminiviridae) in cultivated pepper (Capsicum annuum L.) (Doctoral dissertation, University of California Davis)

  38. Perry KL, McLane H, Thompson JR, Fuchs M (2018) A novel grablovirus from non-cultivated grapevine (Vitis sp.) in North America. Arch Virol 163(1):259–262

    Article  CAS  PubMed  Google Scholar 

  39. Liang P, Navarro B, Zhang Z et al (2015) Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol 96(8):2411–2420

    Article  CAS  PubMed  Google Scholar 

  40. Marwal A, Verma RK, Mishra M, Kumar R, Gaur RK (2019) Mastreviruses in the African world: harbouring both monocot and dicot species. In: Geminiviruses. Springer, Cham, pp 85–102

  41. He YZ, Wang YM, Yin TY et al (2020) A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc Natl Acad Sci USA 117(29):16928–16937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Mattia J, Ryckebusch F, Vernerey MS et al (2020) Co-acquired nanovirus and geminivirus exhibit a contrasted localization within their common aphid vector. Viruses 12(3):299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones RAC (2020) Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses 12(12):1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dauda WP, Abraham P, Fasogbon IV et al (2021) Cassava mosaic virus in Africa: functional analysis of virus coat proteins based on evolutionary processes and protein structure. Gene Rep 24:101239

    Article  CAS  Google Scholar 

  45. Biswas KK, Bhattacharyya UK, Palchoudhury S et al (2020) Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS ONE 15(4):e0231886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Datta S, Budhauliya R, Das B, Gopalakrishnan R, Sharma S, Chatterjee S, Veer V (2017) Rebound of Cotton leaf curl Multan virus and its exclusive detection in cotton leaf curl disease outbreak, Punjab (India), 2015. Sci Rep 7(1):1–14

    Article  Google Scholar 

  47. Anonymous The Cotton Corporation of India Ltd 46th Annual Report 2015–2016. http://cotcorp.org.in/Writereaddata/Downloads/Annual_Rep1516.pdf

  48. Varma A, Mandal B, Singh MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted geminiviruses. The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-Infected host plants. Springer, Dordrecht, pp 205–292

    Chapter  Google Scholar 

  49. Gnanasekaran P, Kishorekumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S (2019) Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol 20(7):1019–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qureshi MA, Lal A, Nawaz-ul-Rehman MS et al (2022) Emergence of Asian endemic begomoviruses as a pandemic threat. Front Plant Sci 13:970941

    Article  PubMed  PubMed Central  Google Scholar 

  51. Emmanuel CJ, Manohara S, Shaw MW (2020) Molecular characterization of begomovirus–betasatellite–alphasatellite complex associated with okra enation leaf curl disease in Northern Sri Lanka. 3 Biotech 10(12):506

    Article  PubMed  PubMed Central  Google Scholar 

  52. Satya VK, Malathi VG, Renukadevi P, Sangeetha B (2022) Role of plant viral satellites association in geminivirus infection. Geminivirus: detection, diagnosis and management. Academic Press, Cambridge, pp 421–442

    Chapter  Google Scholar 

  53. Yang X, Guo W, Li F, Sunter G, Zhou X (2019) Geminivirus-associated betasatellites: exploiting chinks in the antiviral arsenal of plants. Trends Plant Sci 24(6):519–529

    Article  CAS  PubMed  Google Scholar 

  54. Silva FDA, Raimundo GS, Fontes EP (2022) Begomovirus–host protein–protein interactions in intracellular virus movement. Geminivirus: detection, diagnosis and management. Academic Press, Cambridge, pp 347–356

    Chapter  Google Scholar 

  55. Vinoth Kumar R, Shivaprasad PV (2020) Plant-virus-insect tritrophic interactions: insights into the functions of geminivirus virion-sense strand genes. Proc R Soc B 287(1936):20201846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pradhan B, Van Tien V, Dey N, Mukherjee SK (2017) Molecular biology of geminivirus DNA replication. Avid Sci 2–35

  57. Ghosh D, Chakraborty S (2022) Selective REcruitmeNt of plant DNA polymerases by geminivirus. Trends Genet 38(3):211–213

    Article  CAS  PubMed  Google Scholar 

  58. Wu M, Wei H, Tan H et al (2021) Plant DNA polymerases α and δ mediate replication of geminiviruses. Nat Commun 12(1):2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu M, Bejarano ER, Castillo AG, Lozano-Durán R (2022) Geminivirus DNA replication in plants. Geminivirus: detection, diagnosis and management. Academic Press, Cambridge, pp 323–346

    Chapter  Google Scholar 

  60. Mandal A, Mukherjee A, Jha AK (2022) Exploring the functional interactions between geminivirus and host during viral replication, assembly, and movement. In: Geminivirus: detection, diagnosis and management. Academic Press, Cambridge, pp 455–469

  61. Luna AP, Lozano-Durán R (2020) Geminivirus-encoded proteins: not all positional homologs are made equal. Front Microbiol 11:878

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sharma N, Ruhel R (2019) Rolling circle replication and transcription processes in geminiviruses. In: Geminiviruses. Springer, Cham, pp 17–38

  63. Ruhel R, Chakraborty S (2019) Multifunctional roles of geminivirus encoded replication initiator protein. VirusDisease 30(1):66–73

    Article  PubMed  Google Scholar 

  64. Maio F, Helderman TA, Arroyo-Mateos M et al (2020) Identification of tomato proteins that interact with replication initiator protein (Rep) of the Geminivirus TYLCV [rep]. Front Plant Sci 11:1069

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ruhel R, Mazumder M, Gnanasekaran P, Kumar M, Gourinath S, Chakraborty S (2021) Functional implications of residues of the B’ motif of geminivirus replication initiator protein in its helicase activity. FEBS J 288(22):6492–6509

    Article  CAS  PubMed  Google Scholar 

  66. Dong OX, Ronald PC (2019) Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180(1):26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sagar V, Karmakar P, Devi J, Gupta N, Meena BR (2020) Begomovirus menace and its management in vegetable crops. New frontiers in stress management for durable agriculture. Springer, Singapore, pp 493–521

    Chapter  Google Scholar 

  68. Patil BL, Chakraborty S, Czosnek H, Fiallo-Olivé E, Gilbertson RL, Legg J, Zerbini FM (2020) Plant resistance to geminiviruses. Encyclopedia of virology

  69. Yin K, Han T, Xie K, Zhao J, Song J, Liu Y (2019) Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res 1(1):1–9

    Article  Google Scholar 

  70. Sharma N, Sahu PP, Prasad A, Muthamilarasan M, Waseem M, Khan Y, Prasad M (2021) The Sw5a gene confers resistance to ToLCNDV and triggers an HR response after direct AC4 effector recognition. Proc Natl Acad Sci USA 118(33):e2101833118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Naveed K, Abbas A, Khan SA, Amrao L, Ali MA (2018) Global status and future prospects of research in cotton leaf curl disease. Arch Phytopathol Plant Prot 51(7–8):323–337

    Article  Google Scholar 

  72. Ren Y, Tao X, Li D, Yang X, Zhou X (2022) Ty-5 confers broad-spectrum resistance to geminiviruses. Viruses 14(8):1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuon JE, Qi W, Schläpfer P et al (2019) Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol 17(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  74. Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34(1):8–18

    Article  CAS  Google Scholar 

  75. Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, Hutton SF (2019) Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against tomato yellow leaf curl virus and tomato mottle virus. Theor Appl Genet 132(5):1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dhaliwal MS, Jindal SK, Sharma A, Prasanna HC (2020) Tomato yellow leaf curl virus disease of tomato and its management through resistance breeding: a review. J Hortic Sci Biotechnol 95(4):425–444

    Article  CAS  Google Scholar 

  77. Prabhandakavi P, Kumar R, Acharya S et al (2021) Evaluation of tomato inbred lines harboring Ty gene (s) for resistance against Monopartite and Bipartite Begomoviruses. Proc Natl Acad Sci India Sect B Biol Sci 91(1):45–52

    Article  CAS  Google Scholar 

  78. Sáez C, Martínez C, Montero-Pau J et al (2020) A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl New Delhi virus. Front Plant Sci 11:207

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meziadi C, Blanchet S, Geffroy V, Pflieger S (2017) Genetic resistance against viruses in Phaseolus vulgaris L.: state of the art and future prospects. Plant Sci 265:39–50

    Article  CAS  PubMed  Google Scholar 

  80. Soler-Garzón A, Oladzad A, Beaver J et al (2021) NAC candidate gene marker for bgm-1 and interaction with QTL for resistance to bean golden yellow mosaic virus in common bean. Front Plant Sci 12:628443

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kabi M, Das TR, Baisakh B, Swain D (2018) Validation of molecular markers linked to yellow mosaic virus disease resistance in diverse genotypes of green gram (Vigna radiata). Int J Curr Microbiol Appl Sci 7(2):3457–3465

    Article  Google Scholar 

  82. Yadav CB, Bhareti P, Muthamilarasan M et al (2015) Genome-wide SNP identification and characterization in two soybean cultivars with contrasting mungbean yellow mosaic India virus disease resistance traits. PLoS ONE 10(4):e0123897

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nair SK, Babu R, Magorokosho C et al (2015) Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128(9):1839–1854

    Article  CAS  PubMed  Google Scholar 

  84. Mezzetti B, Smagghe G, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Sweet J (2020) RNAi: what is its position in agriculture? J Pest Sci 93(4):1125–1130

    Article  Google Scholar 

  85. Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G (2018) RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci 74(6):1239–1250

    Article  CAS  PubMed  Google Scholar 

  86. Gogoi A, Kaldis A, Dasgupta I, Borah BK, Voloudakis A (2019) Sense- and antisense-mediated resistance against Sri Lankan cassava mosaic virus (SLCMV) in Nicotiana benthamiana. Biol Plant 63:455–464

    Article  CAS  Google Scholar 

  87. Kumar A, Ahmad J, Khan JA (2020) Engineering resistance against cotton leaf curl disease with the application of antisense technology. Res Rep 4:1–7

    Google Scholar 

  88. Faiz H, Abhinav K (2021) Development of immunity against cotton leaf curl virus using antisense AC4 gene. Res J Biotechnol 16:9

    Google Scholar 

  89. Mubarik MS, Khan SH, Ahmad A et al (2020) Controlling geminiviruses before transmission: prospects. Plants (Basel) 9(11):1556

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):1–11

    Article  Google Scholar 

  91. Khan SH (2019) Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 16:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uniyal AP, Yadav SK, Kumar V (2019) The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. J Plant Biochem Biotechnol 28(2):121–132

    Article  CAS  Google Scholar 

  93. Jan SA, Shinwari ZK, Khan I, Sarmir Khan AI, Khurshid H (2022) CRISPR-CAS9 mediated genome editing in plants against viruses: an updated review. Pak J Bot 54(4):1575–1578

    Article  CAS  Google Scholar 

  94. Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70(1):667–697

    Article  CAS  PubMed  Google Scholar 

  95. Mao Y, Botella JR, Liu Y, Zhu JK (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6(3):421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125

    Article  CAS  PubMed  Google Scholar 

  97. Zhang B (2021) CRISPR/Cas gene therapy. J Cell Physiol 236(4):2459–2481

    Article  CAS  PubMed  Google Scholar 

  98. Hahn F, Nekrasov V (2019) CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep 38(4):437–441

    Article  CAS  PubMed  Google Scholar 

  99. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16(1):238

    Article  PubMed  PubMed Central  Google Scholar 

  100. Khatodia S, Bhatotia K, Tuteja N (2017) Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered 8(3):274–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US (2021) Engineering resistance against viruses in field crops using CRISPR-Cas9. Curr Genomics 22(3):214–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Loriato VAP, Martins LGC, Euclydes NC, Reis PAB, Duarte CEM, Fontes EPB (2020) Engineering resistance against geminiviruses: a review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system. Plant Sci 292:110410

    Article  CAS  PubMed  Google Scholar 

  104. Javed K (2020) Agrobacterium mediated delivery of multiplex CRISPR/Cas9 system in cotton for cotton leaf curl virus disease resistance. East Afr Sch J Agric Life Sci 3(3):76–90

    Google Scholar 

  105. Dai X, Chen X, Fang Q, Li J, Bai Z (2018) Inducible CRISPR genome-editing tool: classifications and future trends. Crit Rev Biotechnol 38(4):573–586

    Article  CAS  PubMed  Google Scholar 

  106. Ji X, Si X, Zhang Y, Zhang H, Zhang F, Gao C (2018) Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol 19(1):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, CDLU, Sirsa-125055 for all the support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PS conceived the idea. PS and SKS developed the paper outlay. HJ, SC and IS carried out the exploration and organization of literature. HJ carried out the writing part of the paper.

Corresponding author

Correspondence to Priyanka Siwach.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participation

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, H., Chahal, S., Singh, I. et al. The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies. Mol Biol Rep 50, 3835–3848 (2023). https://doi.org/10.1007/s11033-023-08266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08266-y

Keywords

Navigation