Skip to main content
Log in

Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Groundnut is affected by a variety of abiotic and biotic stressors, including late leaf spot and rust, which cause significant economic loss. In this study, QTL for resistance to late leaf spot and rust from donor variety GPBD 4 were incorporated into a popular groundnut variety (ICGV 00350) through marker assisted backcross (MABC) breeding.

Methods

Eight foreground SSR markers [AhXII (GM1009, GM1573 and Seq8D09) and AhXV (GM1536, GM2009, GM2079, GM2301 and IPAHM103)] linked with disease resistant QTLs were utilized in this study. A set of 217 SSR markers spanning the whole groundnut genome were employed for background analysis. Three backcrosses with recurrent parent and selfing were followed in the cross ICGV 00350 × GPBD 4. Background analysis was carried out in BC3F2; while, phenotypic confirmation for resistance was carried out in BC3F3 generation.

Conclusion

Five advanced backcross lines in BC3F2 were found, with more than 90% recurrent parent genome. The phenotyping of the eight ILs recorded disease scores ranging from 2.0 to 3.0 for LLS and from 1.0 to 3.0 for rust disease scores. All these lines had superior characteristics compared to the recurrent parent ICGV 00350 in terms of late leaf spot and rust resistance. The enhanced ILs will be evaluated further for commercial release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not provided.

Code availability

Not provided.

References

  1. Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884. https://doi.org/10.1038/s41588-019-0405-z

    Article  CAS  PubMed  Google Scholar 

  2. Indiastat (2022) Directorate of Economics and Statistics, Ministry of Agriculture & Farmers Welfare, Govt. of India, New Delhi. In: https://www.indiastat.com/table/agriculture-data/2/groundnut-production/286906/17354/data.aspx (ON2282) & Past Issues

  3. Pramanik A, Tiwari S, Tripathi MK et al (2022) Identification of groundnut germplasm lines for foliar disease resistance and high oleic traits using SNP and gene-based markers and their morphological characterization. Legume Res 45:305–310

    Google Scholar 

  4. Bhat RS, Jadhav MP, Patil P v, Shirasawa K (2022) Genomics-assisted breeding for resistance to leaf spots and rust diseases in peanut. In: Accelerated Plant Breeding, Volume 4. Springer, Berlin. pp 239–278. https://doi.org/10.1007/978-3-030-81107-5_8

  5. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630. https://doi.org/10.1016/j.tplants.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  6. Motagi BN, Bhat RS, Pujer S et al (2022) Genetic enhancement of groundnut: current status and future prospects. Accelerat Plant Breed 4:63–110. https://doi.org/10.1007/978-3-030-81107-5_3

    Article  Google Scholar 

  7. Varshney RK, Bohra A, Yu J et al (2021) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649. https://doi.org/10.1016/j.tplants.2021.03.010

    Article  CAS  PubMed  Google Scholar 

  8. Varshney RK, Barmukh R, Roorkiwal M et al (2021) Breeding custom-designed crops for improved drought adaptation. Adv Genet 2:e202100017. https://doi.org/10.1002/ggn2.202100017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hasan N, Choudhary S, Naaz N et al (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol 19:1–26. https://doi.org/10.1186/s43141-021-00231-1

    Article  CAS  Google Scholar 

  10. Kulwal PL, Mir RR, Varshney RK (2022) Efficient breeding of crop plants. In: Fundamentals of Field Crop Breeding. Springer, Berlin. pp 745–777. https://doi.org/10.1007/978-981-16-9257-4

  11. Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499. https://doi.org/10.1016/j.tibtech.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Bhawar PC, Tiwari S, Tripathi MK et al (2020) Screening of groundnut germplasm for foliar fungal diseases and population structure analysis using gene based SSR markers. Curr J Appl Sci Technol 39:75–84. https://doi.org/10.9734/cjast/2020/v39i230500

    Article  CAS  Google Scholar 

  13. Daudi H, Shimelis H, Mathew I et al (2021) Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: implications for rust resistance breeding. Genet Resour Crop Evol 68:581–604. https://doi.org/10.1007/s10722-020-01007-1

    Article  CAS  PubMed  Google Scholar 

  14. Tang Wang C, Dao Yang X, Xu Chen D et al (2007) Isolation of simple sequence repeats from groundnut. Electron J Biotechnol 10:473–480. https://doi.org/10.4067/S0717-34582007000300015

    Article  Google Scholar 

  15. Janila P, Variath MT, Pandey MK et al (2016) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289. https://doi.org/10.3389/fpls.2016.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bera SK, Kamdar JH, Kasundra S, v, et al (2018) Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214:1–15. https://doi.org/10.1007/s10681-018-2241-0

    Article  CAS  Google Scholar 

  17. Shasidhar Y, Variath MT, Vishwakarma MK et al (2020) Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8:1–15. https://doi.org/10.1016/j.cj.2019.07.001

    Article  Google Scholar 

  18. Pandey MK, Khan AW, Singh VK et al (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941. https://doi.org/10.1111/pbi.12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kolekar RM, Sukruth M, Shirasawa K et al (2017) Marker-assisted backcrossing to develop foliar disease-resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136:948–953. https://doi.org/10.1111/pbr.12549

    Article  CAS  Google Scholar 

  20. Deshmukh DB, Marathi B, Sudini HK et al (2020) Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front Genet 11:514. https://doi.org/10.3389/fgene.2020.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmad S, Nawade B, Sangh C et al (2020) Identification of novel QTLs for late leaf spot resistance and validation of a major rust QTL in peanut (Arachis hypogaea L.). 3 Biotech 10:1–13. https://doi.org/10.1007/s13205-020-02446-4

    Article  Google Scholar 

  22. Mandloi S, Tripathi MK, Tiwari S, Tripathi N (2022) Genetic diversity analysis among late leaf spot and rust resistant and susceptible germplasm in groundnut (Arachis hypogea L.). Isr J Plant Sci 1:1–9

    Google Scholar 

  23. Sujay V, Gowda MVC, Pandey MK et al (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breeding 30:773–788. https://doi.org/10.1007/s11032-011-9661-z

    Article  CAS  Google Scholar 

  24. Ramakrishnan P, Manivannan N, Mothilal A et al (2020) Marker assisted introgression of QTL region to improve late leaf spot and rust resistance in elite and popular variety of groundnut (Arachis hypogaea L.) cv TMV 2. Australas Plant Pathol 49:505–513. https://doi.org/10.1007/s13313-020-00721-9

    Article  CAS  Google Scholar 

  25. Prabhu R, Manivannan N, Mothilal A, Ibrahim SM (2016) Artificial screening for foliar fungal diseases in groundnut (Arachis hypogaea L.). Adv Life Sci 5(14):5634–5638

    Google Scholar 

  26. Subrahmanyam P, McDonald D, Waliyar F et al (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. Inf Bull 47:1

    Google Scholar 

  27. Pande S, Rao JN (2001) Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Dis 85:851–855. https://doi.org/10.1094/PDIS.2001.85.8.851

    Article  CAS  PubMed  Google Scholar 

  28. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  29. Sundaram RM, Vishnupriya MR, Biradar SK et al (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422. https://doi.org/10.1007/s10681-007-9564-6

    Article  Google Scholar 

  30. Wageningen UR (2010) Graphical genotypes. Wageningen UR Plant Breeding. In: http://www.plantbreeding.wur.nl/UK/software_ggt.html

  31. Prabhu R, Manivannan N, Mothilal A, Ibrahim SM (2016) Screening for parental polymorphism using molecular markers in groundnut (Arachis hypogaea L.). Adv Life Sci 5:5347–5352

    Google Scholar 

  32. Varshney RK, Thudi M, May GD, Jackson SA (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304

    Google Scholar 

  33. Divya B, Robin S, Rabindran R et al (2014) Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43. Euphytica 200:61–77. https://doi.org/10.1007/s10681-014-1146-9

    Article  CAS  Google Scholar 

  34. Varshney RK, Pandey MK, Janila P et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781. https://doi.org/10.1007/s00122-014-2338-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pandey MK, Gautami B, Jayakumar T et al (2012) Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed 131:139–147. https://doi.org/10.1111/j.1439-0523.2011.01911.x

    Article  CAS  Google Scholar 

  36. Tang R, Gao G, He L et al (2007) Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics 34:449–459. https://doi.org/10.1016/S1673-8527(07)60049-6

    Article  CAS  PubMed  Google Scholar 

  37. Shirasawa K, Bhat RS, Khedikar YP et al (2018) Sequencing analysis of genetic loci for resistance for late leaf spot and rust in peanut (Arachis hypogaea L.). Front Plant Sci 9:1727. https://doi.org/10.3389/fpls.2018.01727

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gangurde AB, Patil TD, Thakare R, Chaudhari RD (2018) Effect of neem coated urea on nutrient availability, yield attributing characters and yield of pearl millet on vertisol. J Pharm Phytochem 7:2146–2149

    CAS  Google Scholar 

  39. Varshney RK, Mohan SM, Gaur PM et al (2014) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7:2013–2110. https://doi.org/10.3835/plantgenome2013.10.0035

    Article  Google Scholar 

Download references

Funding

Authors are thankful to the Department of Biotechnology (DBT), Government of India, New Delhi for financial support to undertake this study (Grant No: BT/ PR6583/AGII /106/881/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manivannan Narayana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The author declares that the study performed is true with novelty in the interpretations.

Consent to participate

All authors given consent to participate.

Consent for publication

All authors given consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajarathinam, P., Palanisamy, G., P, R. et al. Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.). Mol Biol Rep 50, 2411–2419 (2023). https://doi.org/10.1007/s11033-022-08234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08234-y

Keywords

Navigation