Skip to main content
Log in

Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

In the present study, we aimed to test the hypothesis that hypercapnia, independently and/or in combination with hypoxia, can activate signaling pathways related to the inhibition of proapoptotic (caspase-dependent and caspase-independent) factors and the induction of antiapoptotic factors in facilitating adaptation to hypoxia/ischemia.

Materials and methods

Following exposure to permissive hypercapnia and/or normobaric hypoxia, the degree of apoptosis was evaluated in experimental ischemia models in vivo and in vitro. The percentages of caspase-3, apoptosis-inducing factor (AIF), Bax, and Bcl-2 in astrocytes and neurons derived from male Wistar rats were also calculated. In vitro, cells were subjected to various types of respiratory exposure (hypoxia and/or hypercapnia for 24 or 12 h) as well as further sublethal chemical hypoxia. The percentages of these molecules in nerve cells in the ischemic penumbra of the brain after photothrombotic injury were also calculated.

Results

The degree of apoptosis was found to decrease in ischemic penumbra, mostly due to the hypercapnic component. It was also discovered that the levels of caspase-3, AIF, and Bax decreased in this region, whereas the Bcl-2 levels increased following exposure to hypercapnia and hypercapnic hypoxia.

Conclusions

This integrative assessment of the rate of apoptosis/necrosis in astrocyte and neuron cultures shows that the combination of hypercapnia and hypoxia resulted in the maximum neuroprotective effect. The levels of apoptosis mediators in astrocyte and neuron cultures were calculated after modeling chemical hypoxia in vitro. These results show that the exposure models where permissive hypercapnia and normobaric hypoxia were combined also had the most pronounced inhibitory effects on apoptotic signaling pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen WJ, Chen HW, Yu SL et al (2005) Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock 24:124–131

    Article  CAS  PubMed  Google Scholar 

  2. Yang CC, Lin LC, Wu MS et al (2009) Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent Bcl-2 signaling. Transplantation 88:1251–1260

    Article  CAS  PubMed  Google Scholar 

  3. Lukyanova LD, Germanova EL, Kopaladze RA (2009) Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med 147(4):400–404

    Article  CAS  PubMed  Google Scholar 

  4. Rybnikova E, Samoilov M (2015) Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front Neurosci 9:388

    Article  PubMed  PubMed Central  Google Scholar 

  5. Neckár J, Papousek F, Nováková O et al (2002) Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol 97(2):161–167

    Article  PubMed  Google Scholar 

  6. Shatilo VB, Korkushko OV, Ischuk VA et al (2008) Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Altern Med Biol 9(1):43–52

    Article  Google Scholar 

  7. Sharp FR, Ran R, Lu A et al (2004) Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1:26–35

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tregub P, Kulikov V, Motin Y et al (2015) Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotection effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 24(2):381–387

    Article  PubMed  Google Scholar 

  9. Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis 21(Suppl 2):9–20. https://doi.org/10.1159/000091699

    Article  PubMed  Google Scholar 

  10. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247

    Article  CAS  PubMed  Google Scholar 

  11. Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702. https://doi.org/10.1007/s10495-019-01556-6

    Article  CAS  PubMed  Google Scholar 

  12. Cantagrel S, Krier C, Ducrocq S et al (2003) Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia-ischemia. Neurosci Lett 347(2):106–110

    Article  CAS  PubMed  Google Scholar 

  13. Rybnikova E, Sitnik N, Gluschenko T et al (2006) The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 1089(1):195–202. https://doi.org/10.1016/j.brainres.2006.03.053

    Article  CAS  PubMed  Google Scholar 

  14. Frémont M, Vaeyens F, Herst CV et al (2006) Double-stranded RNA-dependent protein kinase (PKR) is a stress-responsive kinase that induces NFkappaB-mediated resistance against mercury cytotoxicity. Life Sci 78(16):1845–1856. https://doi.org/10.1016/j.lfs.2005.08.024

    Article  CAS  PubMed  Google Scholar 

  15. Stankiewicz AR, Lachapelle G, Foo CP et al (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280(46):38729–38739. https://doi.org/10.1074/jbc.M509497200

    Article  CAS  PubMed  Google Scholar 

  16. Ruchalski K, Mao H, Li Z et al (2006) Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281:7873–7880

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Sato T, O’Rourke B et al (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection. Circulation 97(24):2463–2469

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Yang X, Ge X et al (2019) Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother 109:726–733. https://doi.org/10.1016/j.biopha.2018.10.161

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Q, Cao B, Niu L et al (2010) Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology 112:288–297

    Article  PubMed  Google Scholar 

  20. Tao T, Liu Y, Zhang J et al (2013) Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res 1533:52–62

    Article  CAS  PubMed  Google Scholar 

  21. Tregub PP, Malinovskaya NA, Kulikov VP et al (2016) Inhibition of apoptosis - a potential mechanism for the increased tolerance of brain ischemia with combination of hypercapnia and hypoxia. Bull Exp Biol Med 5:606–609. https://doi.org/10.1007/s10517-016-3481-4

    Article  Google Scholar 

  22. Bespalov AG, Tregub PP, Kulikov VP et al (2014) The role of VEGF, HSP-70 and protein S-100β in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia. Patol Fiziol Eksp Ter 2:24–27

    Google Scholar 

  23. Tregub PP, Malinovskaya NA, Osipova ED et al (2022) Hypercapnia modulates the activity of adenosine A1 receptors and mitoK+ATP-channels in rat brain when exposed to intermittent hypoxia. Neuromol Med 24(2):155–168. https://doi.org/10.1007/s12017-021-08672-0

    Article  CAS  Google Scholar 

  24. Pevsner PH, Eichenbaum JW, Miller DC et al (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J Pharmacol Toxicol Methods 45:227–233

    Article  CAS  PubMed  Google Scholar 

  25. Barth AM, Mody I (2011) Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo. J Neurosci 31:851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuvacheva NV, Morgun AV, Komleva YK et al (2015) In vitro modeling of brain progenitor cell development under the effect of environmental factors. Bull Exp Biol Med 159(4):546–549

    Article  CAS  PubMed  Google Scholar 

  27. Dell RB, Holleran S, Ramakrishnan R (2002) Sample Size Determination. ILAR J 43:207–213

    Article  CAS  PubMed  Google Scholar 

  28. Ferrer I, Friguls B, Dalfó E et al (2003) Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol Appl Neurobiol 5:472–481. https://doi.org/10.1046/j.1365-2990.2003.00485.x

    Article  Google Scholar 

  29. Krantic S, Mechawar N, Reix S et al (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28:670–676

    Article  CAS  PubMed  Google Scholar 

  30. Candé C, Cecconi F, Dessen P et al (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734

    Article  PubMed  Google Scholar 

  31. Mohan S, Abdelwahab SI, Kamalidehghan B et al (2012) Involvement of NF-kappaB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine 19(11):1007–1015

    Article  CAS  PubMed  Google Scholar 

  32. Vucicevic K, Jakovljevic V, Colovic N et al (2016) Association of bax expression and Bcl2/Bax ratio with clinical and molecular prognostic markers in chronic lymphocytic leukemia. J Med Biochem 35(2):150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barth A, Bauer R, Gedrange T et al (1998) Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets. Exp Toxicol Pathol 50(4–6):402–410. https://doi.org/10.1016/S0940-2993(98)80026-2

    Article  CAS  PubMed  Google Scholar 

  34. Zhao ZS, Khan S, O’Brien PJ (1998) Catecholic iron complexes as cytoprotective superoxide scavengers against hypoxia: reoxygenation injury in isolated hepatocytes. Biochem Pharmacol 56(7):825–830. https://doi.org/10.1016/s0006-2952(98)00222-6

    Article  CAS  PubMed  Google Scholar 

  35. Goss SP, Singh RJ, Kalyanaraman B (1999) Bicarbonate enhances the peroxidase activity of Cu, Zn-superoxide dismutase. Role of carbonate anion radical. J Biol Chem 274(40):28233–28239. https://doi.org/10.1074/jbc.274.40.28233

    Article  CAS  PubMed  Google Scholar 

  36. Zakynthinos S, Katsaounou P, Karatza MH et al (2007) Antioxidants increase the ventilatory response to hyperoxic hypercapnia. Am J Respir Crit Care Med 175:62–68

    Article  CAS  PubMed  Google Scholar 

  37. Brini M, Calì T, Ottolini D et al (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814. https://doi.org/10.1007/s00018-013-1550-7

    Article  CAS  PubMed  Google Scholar 

  38. Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34(3):249–270. https://doi.org/10.1385/MN:34:3:249

    Article  CAS  PubMed  Google Scholar 

  39. Lukyanova LD (2011) Modern problems of adaptation to hypoxia. Signaling mechanisms and their role in systemic regulation. Patol Fiziol Eksp Ter 1:3–19

    Google Scholar 

  40. Li L, Qu Y, Li J et al (2007) Relationship between HIF-1alpha expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Res 1180:133–139

    Article  CAS  PubMed  Google Scholar 

  41. Liu BN, Han BX, Liu F (2014) Neuroprotective effect of pAkt and HIF-1 α on ischemia rats. Asian Pac J Trop Med 7(3):221–225. https://doi.org/10.1016/S1995-7645(14)60025-0

    Article  CAS  PubMed  Google Scholar 

  42. McLaughlin B, Hartnett KA, Erhardt JA et al (2003) Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 100:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Russian Science Foundation (Project No. 18-75-00016). We wish to thank Prof. Alla Salmina and Dr. Elizaveta Boytsova for great help in the work on this study. The work was done using the resource base Shared Core Facilities Molecular and Cell Technologies Krasnoyarsk State Medical University.

Funding

Funding was provided by Russian Science Foundation (Grant no. 18-75-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tregub.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the local Ethics Committee of Krasnoyarsk State Medical University (protocol code No. 81/2018, date of approval—22.02.2018). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed (EU Directive 2010/63/EU for animal experiments).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article has been submitted to a preprint platform: https://doi.org/10.21203/rs.3.rs-1742843/v1. This work is licensed under a CC BY 4.0 License.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregub, P., Malinovskaya, N., Hilazheva, E. et al. Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Mol Biol Rep 50, 2317–2333 (2023). https://doi.org/10.1007/s11033-022-08212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08212-4

Keywords

Navigation