Skip to main content
Log in

Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Noguera JL, Rodriguez C, Varona L, Tomas A, Munoz G, Ramirez O, Barragan C, Arque M, Bidanel JP, Amills M, Ovilo C (2009) A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL. BMC Genomics 10:1–12. https://doi.org/10.1186/1471-2164-10-636

    Article  CAS  Google Scholar 

  2. Mills KM, Schinckel AP, Stevens JG, Casey TM, Stewart KR (2020) Evaluation of on farm indicators of gilt reproductive performance potential at 21 days of age. Transl Anim Sci 4:210. https://doi.org/10.1093/tas/txaa210

    Article  Google Scholar 

  3. Sanchez-Davila F, Bernal-Barragan H, Padilla-Rivas G, Del Bosque-González AS, Vázquez-Armijo JF, Ledezma-Torres RA (2015) Environmental factors and ram influence litter size, birth, and weaning weight in Saint Croix hair sheep under semi-arid conditions in Mexico. Trop Anim Health Prod 47:825–831. https://doi.org/10.1007/s11250-015-0795-6

    Article  PubMed  Google Scholar 

  4. Argente MJ (2016) Major components in limiting litter size. In: Payan Carreira R (ed) Insights from animal reproduction. InTech, London, pp 87–114

    Google Scholar 

  5. Pope WF (1994) Embryonic mortality in swine. Embryonic Mortal Domest Species 53:77

    Google Scholar 

  6. Buske B, Sternstein I, Brockmann G (2006) QTL and candidate genes for fecundity in sows. Anim Reprod Sci 95:167–183. https://doi.org/10.1016/j.anireprosci.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  7. Distl O (2007) Mechanisms of regulation of litter size in pigs on the genome level. Reprod Domest Anim 42:10–16. https://doi.org/10.1111/j.1439-0531.2007.00887.x

    Article  PubMed  Google Scholar 

  8. Bolet G, Ollivier L, Dando P (1989) Selection for prolificacy in the pig. I. Results of an eleven-generation selection experiment. Genet Sel Evol 21:93–106. https://doi.org/10.1186/1297-9686-21-1-93

    Article  PubMed Central  Google Scholar 

  9. Town SC, Putman CT, Turchinsky NJ, Dixon WT, Foxcroft GR (2004) Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 128:443–454. https://doi.org/10.1530/rep.1.00069

    Article  CAS  PubMed  Google Scholar 

  10. Vanderhaeghe C, Dewulf J, de Kruif A, Maes D (2013) Non-infectious factors associated with stillbirth in pigs: a review. Anim Reprod Sci 139:76–88. https://doi.org/10.1016/j.anireprosci.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  11. Johnson RK, Zimmerman DR, Kittock R (1984) Selection for components of reproduction in swine. Livest Prod Sci 11:541–558. https://doi.org/10.1016/0301-6226(84)90070-8

    Article  Google Scholar 

  12. Reproto RO (2020) Genetic selection and advances in swine breeding: a review of its impact on sow’s reproductive traits. International Journal of Research and Review 10:41–52

    Google Scholar 

  13. Rutherford KMD, Baxter EM, D’eath RB, Turner SP, Arnott G, Roehe R, Ask B, Sandøe P, Moustsen VA, Thorup F, Edwards SA (2013) The welfare implications of large litter size in the domestic pig I: biological factors. Anim Welf 22:199–218. https://doi.org/10.7120/09627286.22.2.199

    Article  CAS  Google Scholar 

  14. Grandinson K, Rydhmer L, Strandberg E, Lund MS (2000) Estimation of genetic parameters for mortality and causes of death in piglets. In: 51st Annual Meeting of the European Association of Animal Production, The Hague, pp 21–24

  15. Kemp B, Da Silva CLA, Soede NM (2018) Recent advances in pig reproduction: focus on impact of genetic selection for female fertility. Reprod Domest Anim 53:28–36. https://doi.org/10.1111/rda.13264

    Article  PubMed  Google Scholar 

  16. Langendijk P, Plush K (2019) Parturition and Its Relationship with Stillbirths and Asphyxiated Piglets. Animals 9:885. https://doi.org/10.3390/ani9110885

    Article  PubMed  PubMed Central  Google Scholar 

  17. Canario L, Cantoni ELBE, Le Bihan E, Caritez JC, Billon Y, Bidanel JP, Foulley JL (2006) Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J Anim Sci 84:3185–3196. https://doi.org/10.2527/jas.2005-775

    Article  CAS  PubMed  Google Scholar 

  18. Soller M (1994) Marker assisted selection-an overview. Anim Biotechnol 5:193–207. https://doi.org/10.1080/10495399409525821

    Article  Google Scholar 

  19. Rohrer GA, Ford JJ, Wise TH, Vallet JL, Christenson RK (1999) Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J Anim Sci 77:1385–1391. https://doi.org/10.2527/1999.7761385x

    Article  CAS  PubMed  Google Scholar 

  20. Rathje TA, Rohrer GA, Johnson RK (1997) Evidence for quantitative trait loci affecting ovulation rate in pigs. J Anim Sci 75:1486–1494. https://doi.org/10.2527/1997.7561486x

    Article  CAS  PubMed  Google Scholar 

  21. Campbell EMG, Nonneman D, Rohrer GA (2003) Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8. J Anim Sci 81:1706–1714. https://doi.org/10.2527/2003.8171706x

    Article  CAS  PubMed  Google Scholar 

  22. King AH, Jiang Z, Gibson JP, Haley CS, Archibald AL (2003) Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biol Reprod 68:2172–2179. https://doi.org/10.1095/biolreprod.102.012955

    Article  CAS  PubMed  Google Scholar 

  23. Rückert C, Bennewitz J (2010) Joint QTL analysis of three connected F2-crosses in pigs. Genet Sel Evol 42:1–12. https://doi.org/10.1186/1297-9686-42-40

    Article  Google Scholar 

  24. Li X, Ye J, Han X, Qiao R, Li X, Lv G, Wang K (2020) Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 112(1):199–206. https://doi.org/10.1016/j.ygeno.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  25. Ma X, Li PH, Zhu MX, He LC, Sui SP, Gao S, Su GS, Ding NS, Huang Y, Lu ZQ, Huang XG (2018) Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 12(12):2453–2461. https://doi.org/10.1017/s1751731118000332

    Article  CAS  PubMed  Google Scholar 

  26. Guo X, Su G, Christensen OF, Janss L, Lund MS (2016) Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs. BMC Genomics 17:1–12. https://doi.org/10.1186/s12864-016-2806-z

    Article  CAS  Google Scholar 

  27. Guo YM, Lee GJ, Archibald AL, Haley CS (2008) Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan× Large White populations. Anim Genet 39:486–495. https://doi.org/10.1111/j.1365-2052.2008.01756.x

    Article  PubMed  Google Scholar 

  28. Rosendo A, Iannuccelli N, Gilbert H, Riquet J, Billon Y, Amigues Y, Milan D, Bidanel JP (2012) Microsatellite mapping of quantitative trait loci affecting female reproductive tract characteristics in Meishan× Large White F2 pigs. J Anim Sci 90:37–44. https://doi.org/10.2527/jas.2011-3989

    Article  CAS  PubMed  Google Scholar 

  29. Tart JK, Johnson RK, Bundy JW, Ferdinand NN, McKnite AM, Wood JR, Miller PS, Rothschild MF, Spangler ML, Garrick DJ, Kachman SD (2013) Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim Genet 44:387–397. https://doi.org/10.1111/age.12028

    Article  CAS  PubMed  Google Scholar 

  30. Schneider JF, Nonneman DJ, Wiedmann RT, Vallet JL, Rohrer GA (2014) Genome wide association and identification of candidate genes for ovulation rate in swine. J Anim Sci 92:3792–3803. https://doi.org/10.2527/jas.2014-7788

    Article  CAS  PubMed  Google Scholar 

  31. Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B (2014) High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC Genomics 15:1–12. https://doi.org/10.1186/1471-2164-15-542

    Article  Google Scholar 

  32. Onteru SK, Fan B, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF (2012) A whole-genome association study for pig reproductive traits. Anim Genet 43:18–26. https://doi.org/10.1111/j.1365-2052.2011.02213.x

    Article  CAS  PubMed  Google Scholar 

  33. Coster A, Madsen O, Heuven HC, Dibbits B, Groenen MA, van Arendonk JA, Bovenhuis H (2012) The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS ONE 7:31825. https://doi.org/10.1371/journal.pone.0031825

    Article  CAS  Google Scholar 

  34. Bidanel JP (2011) Biology and genetics of reproduction. Genet Pig. 2:222–32

    Google Scholar 

  35. Rothschild MF (1996) Genetics and reproduction in the pig. Anim Reprod Sci 42:143–151. https://doi.org/10.1016/0378-4320(96)01486-8

    Article  Google Scholar 

  36. Drogemuller C, Hamann H, Distl O (2001) Candidate gene markers for litter size in different German pig lines. J Anim Sci 79:2565–2570. https://doi.org/10.2527/2001.79102565x

    Article  CAS  PubMed  Google Scholar 

  37. Vallet JL, Freking BA, Leymaster KA, Christenson RK (2005) Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine. Anim Genet 36:97–103. https://doi.org/10.1111/j.1365-2052.2005.01233.x

    Article  CAS  PubMed  Google Scholar 

  38. He LC, Li PH, Ma X, Sui SP, Gao S, Kim SW, Gu YQ, Huang Y, Ding NS, Huang RH (2017) Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim Genet 48(1):48–54. https://doi.org/10.1111/age.12492

    Article  CAS  PubMed  Google Scholar 

  39. Lei B, Gao S, Luo LF, Xia XY, Jiang SW, Deng CY, Xiong YZ, Li FE (2011) A SNP in the miR-27a gene is associated with litter size in pigs. Mol Biol Rep 38(6):3725–3729. https://doi.org/10.1007/s11033-010-0487-2

    Article  CAS  PubMed  Google Scholar 

  40. Getmantseva LV, Bakoev SY, Shevtsova VS, Kolosov AY, Bakoev NF and Kolosova MA (2020) Assessing the Effect of SNPs on Litter Traits in Pigs. Scientifica 2020.

  41. Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA (2012) KPNA7, an oocyte-and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod Fertil Dev 24:382–391. https://doi.org/10.1071/RD11119

    Article  CAS  PubMed  Google Scholar 

  42. Couse JF, Korach K (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocrine Rev 20:358–417. https://doi.org/10.1210/edrv.20.3.0370

    Article  CAS  Google Scholar 

  43. Munoz G, Ovilo C, Amills M, Rodriguez C (2004) Mapping of the porcine oestrogen receptor 2 gene and association study with litter size in Iberian pigs. Anim Genet 35:242–244. https://doi.org/10.1111/j.1365-2052.2004.01141.x

    Article  CAS  PubMed  Google Scholar 

  44. Kowalski AA, Graddy LG, Vale-Cruz DS, Choi I, Katzenellenbogen BS, Simmen FA, Simmen RC (2002) Molecular cloning of porcine estrogen receptor-β complementary DNAs and developmental expression in peri implantation embryos. Biol Reprod 66:760–769. https://doi.org/10.1095/biolreprod66.3.760

    Article  CAS  PubMed  Google Scholar 

  45. Rothschild F (1996) Genetics and reproduction in the pig. Reprod Livest Sci 42:143–151. https://doi.org/10.1016/0378-4320(96)01486-8

    Article  Google Scholar 

  46. Muñoz G, Ovilo C, Estellé J, Silió L, Fernández A, Rodriguez C (2007) Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line. Genet Sel Evol 39:1–12. https://doi.org/10.1186/1297-9686-39-2-195

    Article  Google Scholar 

  47. Dall’Olio S, Fontanesi L, Tognazzi L, Buttazzoni L, Gallo M, Russo V (2011) ESR1 and ESR2 gene markers are not associated with number of piglets born alive in Italian Large White sows. Ital J Anim Sci 10:35. https://doi.org/10.4081/ijas.2011.e35

    Article  CAS  Google Scholar 

  48. Isler BJ, Irvin KM, Neal SM, Moeller SJ, Davis ME (2002) Examination of the relationship between the estrogen receptor gene and reproductive traits in swine. J Anim Sci 80:2334–2339

    CAS  PubMed  Google Scholar 

  49. Laliotis GP, Marantidis A, Avdi M (2017) Association of BF, RBP4, and ESR2 genotypes with litter size in an autochthonous pig population. Anim Biotechnol 28:138–143. https://doi.org/10.1080/10495398.2016.1242490

    Article  CAS  PubMed  Google Scholar 

  50. Magni P, Motta M, Martini L (2000) Leptin: a possible link between food intake, energy expenditure, and reproductive function. Regul Pept 92:51–56. https://doi.org/10.1016/S0167-0115(00)00149-X

    Article  CAS  PubMed  Google Scholar 

  51. Al-Hussaniy HA, Alburghaif AH, Naji MA (2021) Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life 14:600–605

    Article  PubMed  PubMed Central  Google Scholar 

  52. Neuenschwander S, Rettenberger G, Meijerink H, Jorg H, Stranzinger G (1996) Partial characterization of porcine obesity gene (OBS) and its localization to chromosome 18 by somatic cell hybrids. Anim Genet 27:275–278. https://doi.org/10.1111/j.1365-2052.1996.tb00489.x

    Article  CAS  PubMed  Google Scholar 

  53. Stratil A, Peelman L, Van Poucke M, Cepica S (1997) A HinfI PCR-RFLP at the porcine leptin (LEP) gene. Anim Genet 28:371–372. https://doi.org/10.1111/j.1365-2052.1997.tb03272.x

    Article  CAS  PubMed  Google Scholar 

  54. Perez-Montarelo D, Fernandez A, Barragan C, Noguera JL, Folch JM, Rodríguez MC, Ovilo C, Silio L, Fernandez AI (2013) Transcriptional characterization of porcine leptin and leptin receptor genes. PLoS ONE 8:66398. https://doi.org/10.1371/journal.pone.0066398

    Article  CAS  Google Scholar 

  55. Chen CC, Chang T, Su HY (2004) Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits. Anim Biotechnol 15:89–102. https://doi.org/10.1081/ABIO-120037903

    Article  CAS  PubMed  Google Scholar 

  56. Terman A (2005) Effect of the polymorphism of prolactin receptor (PRLR) and leptin (LEP) genes on litter size in Polish pigs. J Anim Breed Genet 122:400–404. https://doi.org/10.1111/j.1439-0388.2005.00547.x

    Article  CAS  PubMed  Google Scholar 

  57. Rempel LA, Nonneman DJ, Wise TH, Erkens T, Peelman LJ, Rohrer GA (2010) Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine. J Anim Sci 88:1–15. https://doi.org/10.2527/jas.2009-1985

    Article  CAS  PubMed  Google Scholar 

  58. Vega RS, Castillo RMC, Barrientos NNB, Llanes-Autriz MM, Cho BW, Celia B, Villa NO (2018) Leptin (T3469C) and estrogen receptor (T1665G) gene polymorphisms and their associations to backfat thickness and reproductive traits of large white pigs (Sus scrofa L.). Philipp J Sci 147:293–300

    Google Scholar 

  59. Bing Z, Gongshe Y, Chao S, Minrui H (2010) Effects of leptin gene on litter size in Luchuan and largewhite pig.

  60. Fu Y, Li L, Li B, Fang X, Ren S (2016) Long form leptin receptor and SNP effect on reproductive traits during embryo attachment in Suzhong sows. Anim Reprod Sci 168:57–65. https://doi.org/10.1016/j.anireprosci.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  61. de Oliveira PJ, Facioni Guimaraes SE, Savio Lopes P, Menck Soares MA, Vieira Pires A, Gualberto Barbosa MV, de Almeida e silva TR (2006) Associations of leptin gene polymorphisms with production traits in pigs. J Anim Breed Genet 123:378–383

    Article  Google Scholar 

  62. Ponsuksili S, Wimmers K, Yerle M, Schellander K (2001) Mapping of 93 porcine ESTs preferentially expressed in liver. Mamm Genome 12:869–872. https://doi.org/10.1007/s00335-001-3024-8

    Article  CAS  PubMed  Google Scholar 

  63. Schillo KK (2009) Reproductive physiology of mammals: from farm to field and beyond. Delmar Publishers, New York

    Google Scholar 

  64. Jiang ZH, Gibson JP (1998) A PCR-RFLP marker at the porcine complement factor B gene locus shows between-population frequency variation. J Anim Sci 76:1716–1717. https://doi.org/10.2527/1998.7661716x

    Article  CAS  PubMed  Google Scholar 

  65. Chen LH, Wang LX, Ji YG, Zhang LC, Yan H (2009) Association of polymorphism for porcine BF gene with reproductive traits and placental efficiency in Large White. Yi Chuan 31:615–619. https://doi.org/10.3724/sp.j.1005.2009.00615

    Article  PubMed  Google Scholar 

  66. Buske B, Brunsch C, Zeller K, Reinecke P, Brockmann G (2005) Analysis of properdin (BF) genotypes associated with litter size in a commercial pig cross population. J Anim Breed Genet 122:259–263. https://doi.org/10.1111/j.1439-0388.2005.00528.x

    Article  CAS  PubMed  Google Scholar 

  67. Marantidis A, Papadopoulos AI, Michailidis G, Avdi M (2013) Association of BF gene polymorphism with litter size in a commercial pig crosses population. Anim Reprod Sci 141:75–79. https://doi.org/10.1016/j.anireprosci.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  68. Giudice LC (2006) Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best practice & research. Clin Endocrinol Metab 20:235–244. https://doi.org/10.1016/j.beem.2006.03.005

    Article  CAS  Google Scholar 

  69. Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS (2015) H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 7:996–1003. https://doi.org/10.15252/emmm.201505245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mazerbourg S, Monget P (2018) Insulin-like growth factor binding proteins and IGFBP proteases: a dynamic system regulating the ovarian folliculogenesis. Front Endocrinol 9:134. https://doi.org/10.3389/fendo.2018.00134

    Article  Google Scholar 

  71. An SM, Hwang JH, Kwon S, Yu GE, Park DH, Kang DG, Kim TW, Park HC, Ha J, Kim CW (2018) Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3 genes on litter size traits in Berkshire pigs. Anim Biotechnol 29:301–308. https://doi.org/10.1080/10495398.2017.1395345

    Article  CAS  PubMed  Google Scholar 

  72. Sironen AI, Uimari P, Serenius T, Mote B, Rothschild M, Vilkki J (2010) Effect of polymorphisms in candidate genes on reproduction traits in Finnish pig populations. J Anim Sci 88:821–827. https://doi.org/10.2527/jas.2009-2426

    Article  CAS  PubMed  Google Scholar 

  73. Harney JP, Ott TL, Geisert RD, Bazer FW (1993) Retinol-binding protein gene expression in cyclic and pregnant endometrium of pigs, sheep, and cattle. Biol Reprod 49:1066–1073. https://doi.org/10.1095/biolreprod49.5.1066

    Article  CAS  PubMed  Google Scholar 

  74. Messer LA, Wang L, Yelich J, Pomp D, Geisert RD, Rothschild MF (1996) Linkage mapping of the retinol-binding protein 4 (RBP4) gene to porcine chromosome 14. Mamm Genome 7:396–396. https://doi.org/10.1007/s003359900117

    Article  CAS  PubMed  Google Scholar 

  75. Brief S, Chew BP (1985) Effects of vitamin A and beta-carotene on reproductive performance in gilts. J Anim Sci 60:998–1004. https://doi.org/10.2527/jas1985.604998x

    Article  CAS  PubMed  Google Scholar 

  76. Ollivier L, Messer LA, Rothschild MF, Legault C (1997) The use of selection experiments for detecting quantitative trait loci. Genet Res 69:227–232. https://doi.org/10.1017/s0016672397002802

    Article  CAS  PubMed  Google Scholar 

  77. Terman A, Kmiec M, Polasik D, Rybarczyk A (2011) Association between RBP4 gene polymorphism and reproductive traits in Polish sows. J Anim Vet Adv 10:2639–2641. https://doi.org/10.3923/javaa.2011.2639.2641

    Article  CAS  Google Scholar 

  78. Niu SY, Wang XP, Hao FG, Zhao RX (2008) Effect of the polymorphism of RBP4 and OPN genes on litter size in Tibet pigs. Acta Agric Scand Sect A 58:10–13. https://doi.org/10.1080/09064700802054170

    Article  CAS  Google Scholar 

  79. Marantidis A, Laliotis GP, Avdi M (2016) Association of RBP4 genotype with phenotypic reproductive traits of sows. Genet Res Int. https://doi.org/10.1155/2016/4940532

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mencik S, Vukovic V, Spehar M, Modric M, Ostovic M, Kabalin AE (2019) Association between ESR1 and RBP4 genes and litter size traits in a hyperprolific line of Landrace× Large White cross sows. Vet Med 64:109–117. https://doi.org/10.17221/87/2018-VETMED

    Article  CAS  Google Scholar 

  81. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268. https://doi.org/10.1210/edrv.19.3.0334

    Article  CAS  PubMed  Google Scholar 

  82. Vincent AL, Tuggle CK, Rothschild MF, Evans G, Short TH, Southwood OI, Plastow GS (1998) The prolactin receptor gene is associated with increased litter size in pigs. Iowa State University Animal Industry Report 1(1).

  83. Rothschild MF, Vincent AL, Tuggle CK, Evans G, Short TH, Southwood OI, Wales R, Plastow GS (1998) A mutation in the prolactin receptor gene is associated with increased litter size in pigs. Anim Genet 29:60–74

    Google Scholar 

  84. Rens BV, Lende TV (2002) Litter size and piglet traits of gilts with different prolactin receptor genotypes. Theriogenology 57:883–893. https://doi.org/10.1016/S0093-691X%2801%2900693-8

    Article  PubMed  Google Scholar 

  85. Putnova L, Knoll A, Dvorak J, Cepica S (2002) A new HpaII PCR-RFLP within the porcine prolactin receptor (PRLR) gene and study of its effect on litter size and number of teats. J Anim Breed Genet 119:57–63. https://doi.org/10.1046/j.1439-0388.2002.00316.x

    Article  CAS  Google Scholar 

  86. Xing-ping WANG, Li-xian WANG, Zhuo-ma LR, Shi-duo SUN (2008) Analysis of PRLR and BF genotypes associated with litter size in Beijing black pig population. Agric Sci China 7:1374–1378. https://doi.org/10.1016/S1671-2927(08)60187-X

    Article  Google Scholar 

  87. Ricken A, Lochhead P, Kontogiannea M, Farookhi R (2002) Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology 143:2741–2749. https://doi.org/10.1210/endo.143.7.8908

    Article  CAS  PubMed  Google Scholar 

  88. Tepekoy F, Akkoyunlu G, Demir R (2015) The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J Assist Reprod Genet 32:337–346. https://doi.org/10.1007/s10815-014-0409-7

    Article  PubMed  Google Scholar 

  89. Buimer M, Keijser R, Jebbink JM, Wehkamp D, van Kampen AH, Boer K, van der Post JA, Ris-Stalpers C (2008) Seven placental transcripts characterize HELLP-syndrome. Placenta 29:444–453. https://doi.org/10.1016/j.placenta.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  90. Atli MO, Guzeloglu A, Dinc DA (2011) Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy. Anim Reprod Sci 125:94–102. https://doi.org/10.1016/j.anireprosci.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  91. Kemp C, Willems E, Abdo S, Lambiv L, Leyns L (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and post implantation development. Dev Dyn 233:1064–1075. https://doi.org/10.1002/dvdy.20408

    Article  CAS  PubMed  Google Scholar 

  92. Brown NL, Paddock SW, Sattler CA, Cronmiller C, Thomas BJ, Carroll SB (1996) Daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol 179:65–78. https://doi.org/10.1006/dbio.1996.0241

    Article  CAS  PubMed  Google Scholar 

  93. Sun X, Mei S, Tao H, Wang G, Su L, Jiang S, Deng C, Xiong Y, Li F (2011) Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics 12:1–10. https://doi.org/10.1186/1471-2164-12-111

    Article  CAS  Google Scholar 

  94. Tao H, Mei S, Sun X, Peng X, Zhang X, Ma C, Wang L, Hua L, Li F (2013) Associations of TCF12, CTNNAL1 and WNT10B gene polymorphisms with litter size in pigs. Anim Reprod Sci 140:189–194. https://doi.org/10.1016/j.anireprosci.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  95. Cauffman G, Van de Velde H, Liebaers I, Van Steirteghem A (2005) DAZL expression in human oocytes, preimplantation embryos and embryonic stem cells. Mol Hum Reprod 11:405–411. https://doi.org/10.1093/molehr/gah167

    Article  CAS  PubMed  Google Scholar 

  96. Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77. https://doi.org/10.1038/37987

    Article  CAS  PubMed  Google Scholar 

  97. Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, Spiegel EK, Gilson KM (2001) Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci 79:623–633. https://doi.org/10.2527/2001.793623x

    Article  CAS  PubMed  Google Scholar 

  98. Dall’Olio S, Fontanesi L, Tognazzi L, Russo V (2010) Genetic structure of candidate genes for litter size in Italian Large White pigs. Vet Res Commun 34:203–206. https://doi.org/10.1007/s11259-010-9380-7

    Article  Google Scholar 

  99. Zhang YH, Mei SQ, Peng XW, Niu BY, Ren ZQ, Zuo B, Xu DQ, Lei MG, Zheng R, Jiang SW, Deng CY (2009) Molecular characterization and SNPs analysis of the porcine deleted in AZoospermia like (pDAZL) gene. Anim Reprod Sci 112:415–422. https://doi.org/10.1016/j.anireprosci.2008.05.069

    Article  CAS  PubMed  Google Scholar 

  100. Curtin D, Ferris HA, Häkli M, Gibson M, Janne OA, Palvimo JJ, Shupnik MA (2004) Small nuclear RING finger protein stimulates the rat luteinizing hormone-β promoter by interacting with Sp1 and steroidogenic factor-1 and protects from androgen suppression. Mol Endocrinol 18:1263–1276. https://doi.org/10.1210/me.2003-0221

    Article  CAS  PubMed  Google Scholar 

  101. Saville B, Poukka H, Wormke M, Jänne OA, Palvimo JJ, Stoner M, Samudio I, Safe S (2002) Cooperative coactivation of estrogen receptor α in ZR-75 human breast cancer cells by SNURF and TATA-binding protein. J Biol Chem 277:2485–2497. https://doi.org/10.1074/jbc.M109021200

    Article  CAS  PubMed  Google Scholar 

  102. Hirvonen-Santti SJ, Sriraman V, Anttonen M, Savolainen S, Palvimo JJ, Heikinheimo M, Richards JS, Jänne OA (2004) Small nuclear RING finger protein expression during gonad development: regulation by gonadotropins and estrogen in the postnatal ovary. Endocrinology 145:2433–2444. https://doi.org/10.1210/en.2003-1328

    Article  CAS  PubMed  Google Scholar 

  103. Bu-yue N, Xiao-ming L, Yuan-zhu X, Xi-biao W (2016) Identification of novel polymorphisms in porcine ring finger protein 4 and matrix metalloproteinase 9 genes and association analysis with litter size traits. J Northeast Agric Univ 23:31–38. https://doi.org/10.1016/S1006-8104(16)30056-3

    Article  Google Scholar 

  104. Niu BY, Ye LZ, Li FE, Deng CY, Jiang SW, Lei MG, Xiong YZ (2009) Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim Reprod Sci 110:283–292. https://doi.org/10.1016/j.anireprosci.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  105. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RA (2016) Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci 12:100. https://doi.org/10.7150/ijbs.13498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo Y, Huang Y, Hou L, Ma J, Chen C, Ai H, Huang L, Ren J (2017) Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet Sel Evol 49:1–11. https://doi.org/10.1186/s12711-017-0295-4

    Article  CAS  Google Scholar 

  108. Cho IC, Park HB, Ahn JS, Han SH, Lee JB, Lim HT, Yoo CK, Jung EJ, Kim DH, Sun WS, Ramayo-Caldas Y (2019) A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet 15:1008279. https://doi.org/10.1371/journal.pgen.1008279

    Article  CAS  Google Scholar 

  109. Nosková A, Hiltpold M, Janett F, Echtermann T, Fang ZH, Sidler X, Selige C, Hofer A, Neuenschwander S, Pausch H (2021) Infertility due to defective sperm flagella caused by an intronic deletion in DNAH17 that perturbs splicing. Genetic 217:33. https://doi.org/10.1093/genetics/iyaa033

    Article  Google Scholar 

  110. Ren J, Mao H, Zhang Z, Xiao S, Ding N, Huang L (2011) A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity 106:862–868. https://doi.org/10.1038/hdy.2010.129

    Article  CAS  PubMed  Google Scholar 

  111. Ding R, Qiu Y, Zhuang Z, Ruan D, Wu J, Zhou S, Ye J, Cao L, Hong L, Xu Z, Zheng E (2021) Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs. Theriogenology 173:269–278. https://doi.org/10.1016/j.theriogenology.2021.08.012

    Article  CAS  PubMed  Google Scholar 

  112. Bergfelder-Drüing S, Grosse-Brinkhaus C, Lind B, Erbe M, Schellander K, Simianer H, Tholen E (2015) A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS ONE 10:0117468. https://doi.org/10.1371/journal.pone.0117468

    Article  CAS  Google Scholar 

  113. Bogacka I, Bogacki M (2011) The quantitative expression of peroxisome proliferator activated receptor (PPAR) genes in porcine endometrium through the estrous cycle and early pregnancy. J Physiol Pharmacol 62:559. https://doi.org/10.1016/S1642-431X(12)60083-7

    Article  CAS  PubMed  Google Scholar 

  114. Guo LY, Fu JL, Wang AG (2012) Analysis of association between CRS-PCR polymorphisms of integrin β1 gene and litter size in pigs. Yi Chuan 34:879–886. https://doi.org/10.3724/sp.j.1005.2012.00879

    Article  CAS  PubMed  Google Scholar 

  115. Wu P, Wang K, Yang Q, Zhou J, Chen D, Ma J, Tang Q, Jin L, Xiao W, Jiang A, Jiang Y (2018) Identifying SNPs and candidate genes for three litter traits using single-step GWAS across six parities in Landrace and Large White pigs. Physiol Genomics 50:1026–1035. https://doi.org/10.1152/physiolgenomics.00071.2018

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Z, Chen Z, Ye S, He Y, Huang S, Yuan X, Chen Z, Ha Z, Li J (2019) Genome-wide association study for reproductive traits in a Duroc pig population. Animals 9:732. https://doi.org/10.3390/ani9100732

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen Z, Ye S, Teng J, Diao S, Yuan X, Chen Z, Zhang H, Li J, Zhang Z (2019) Genome-wide association studies for the number of animals born alive and dead in duroc pigs. Theriogenology 139:36–42. https://doi.org/10.1016/j.theriogenology.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Ding X, Tan Z, Xing K, Yang T, Pan Y, Wang Y, Mi S, Sun D, Wang C (2018) Genome-wide association study for reproductive traits in a Large White pig population. Anim Genet 49:127–131. https://doi.org/10.1111/age.12638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang Y, Tang S, Xiao W, Yun P, Ding X (2020) A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds. Asian Australas J Anim Sci 33:1400. https://doi.org/10.5713/ajas.19.0411

    Article  CAS  PubMed  Google Scholar 

  120. Mo J, Lu Y, Zhu S, Feng L, Qi W, Chen X, Xie B, Chen B, Lan G, Liang J (2022) Genome-wide association studies, runs of homozygosity analysis, and copy number variation detection to identify reproduction-related genes in Bama Xiang Pigs. Front Vet Sci. https://doi.org/10.3389/fvets.2022.892815

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaishnav, S., Chauhan, A., Ajay, A. et al. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 50, 3705–3721 (2023). https://doi.org/10.1007/s11033-022-08168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08168-5

Keywords

Navigation