Skip to main content
Log in

TLR3 stimulation improves the migratory potency of adipose-derived mesenchymal stem cells through the stress response pathway in the melanoma mouse model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Mesenchymal stem cells (MSCs) are utilized as a carrier of anti-tumor agents in targeted anti-cancer therapy. Despite the improvements in this area, there are still some unsolved issues in determining the appropriate dose, method of administration and biodistribution of MSCs. The current study aimed to determine the influence of toll-like receptor 3 (TLR3) stimulation on the potential of MSCs migration to the neoplasm environment in the mouse melanoma model.

Methods and results

Adipose-derived MSCs (ADMSCs) were isolated from the GFP+ transgenic C57BL/6 mouse and treated with different doses (1 µg/ml and 10 µg/ml) of polyinosinic-polycytidylic acid, the related TLR3 agonist, at various time points (1 and 4 h). Following the treatment, the expression of targeted genes such as α4, α5, and β1 integrins and TGF-β and IL-10 anti-inflammatory cytokines was determined using real-time PCR. In vivo live imaging evaluated the migration index of the intraperitoneally (IP) injected treated ADMSCs in a lung tumor-bearing mouse (C57BL/6) melanoma model (n = 5). The presented findings demonstrated that TLR3 stimulation enhanced both migration of ADMSCs to the tumor area compared with control group (n = 5) and expression of α4, α5, and β1 integrins. It was also detected that the engagement of TLR3 resulted in the anti-inflammatory behavior of the cells, which might influence the directed movement of ADMSCs.

Conclusion

This research identified that TLR3 activation might improve the migration via the stimulation of stress response in the cells and depending on the agonist concentration and time exposure, this activated pathway drives the migratory behavior of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADMSCs:

Adipose derived mesenchymal stem cells

TLR3:

Toll-like receptor 3

Poly(IC):

Polyinosinic-polycytidylic acid

qRT-PCR:

Quantitative-real time polymerase reaction

References

  1. Shojaei F, Rahmati S, Banitalebi Dehkordi M (2019) A review on different methods to increase the efficiency of mesenchymal stem cell-based wound therapy. Wound Repair Regen 27(6):661–671. https://doi.org/10.1111/wrr.12749

    Article  PubMed  Google Scholar 

  2. Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC (2018) Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int 2018:6901983. https://doi.org/10.1155/2018/6901983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Zhang D, Shen B, Zhang Y, Gu P (2018) Stem/progenitor cells and biodegradable scaffolds in the treatment of retinal degenerative diseases. Curr Stem Cell Res Ther 13(3):160–173. https://doi.org/10.2174/1574888X13666171227230736

    Article  CAS  PubMed  Google Scholar 

  4. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S et al (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13(9):1738–1755. https://doi.org/10.1002/term.2914

    Article  CAS  PubMed  Google Scholar 

  5. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9(1):12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71(2):181–197. https://doi.org/10.1016/j.cryobiol.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  7. De Becker A, Van Riet I (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J stem cells 8(3):73. https://doi.org/10.4252/wjsc.v8.i3.73

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG (2019) Mesenchymal stem cell migration and tissue repair. Cells 8(8):784. https://doi.org/10.3390/cells8080784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toh WS, Zhang B, Lai RC, Lim SK (2018) Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy 20(12):1419–1426. https://doi.org/10.1016/j.jcyt.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  10. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V (2020) Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol 8:43. https://doi.org/10.3389/fbioe.2020.00043

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL et al (2017) In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int 2017:8085637. https://doi.org/10.1155/2017/8085637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV (2018) Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol 9:259. https://doi.org/10.3389/fphar.2018.00259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dvorak HF (2015) Tumors: wounds that do not heal—redux. Cancer Immunol Res 3(1):1–11. https://doi.org/10.1158/2326-6066.CIR-14-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng S, Nethi SK, Rathi S, Layek B, Prabha S (2019) Engineered mesenchymal stem cells for targeting solid tumors: therapeutic potential beyond regenerative therapy. J Pharmacol Exp Ther 370(2):231–241. https://doi.org/10.1124/jpet.119.259796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang F, Eid S, Dennis JE, Cooke KR, Auletta JJ, Lee Z (2015) Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation. J Stem Cells Regen Med 11(2):34–43. https://doi.org/10.46582/jsrm.1102007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Wang K, Chen S, Chen Y (2019) Effects of mesenchymal stem cells harboring the Interferon-beta gene on A549 lung cancer in nude mice. Pathol Res Pract 215(3):586–593. https://doi.org/10.1016/j.prp.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  17. Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M et al (2021) Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 11(1):1–18. https://doi.org/10.1038/s41598-021-97435-9

    Article  CAS  Google Scholar 

  18. Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O’Shea SK (2021) Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 10(2):CNS73. https://doi.org/10.2217/cns-2020-0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ et al (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89(2):259–267. https://doi.org/10.1038/clpt.2010.298

    Article  CAS  PubMed  Google Scholar 

  20. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  21. Segers VF, Van Riet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJ et al (2006) Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol 290(4):H1370–H1377. https://doi.org/10.1152/ajpheart.00523.2005

    Article  CAS  PubMed  Google Scholar 

  22. Novo E, Cannito S, Zamara E, di Bonzo LV, Caligiuri A, Cravanzola C et al (2007) Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 170(6):1942–1953. https://doi.org/10.2353/ajpath.2007.060887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tabatabai G, Frank B, Möhle R, Weller M, Wick W (2006) Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12. Brain 129(9):2426–2435. https://doi.org/10.1093/brain/awl173

    Article  PubMed  Google Scholar 

  24. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26(1):99–107. https://doi.org/10.1634/stemcells.2007-0563

    Article  CAS  PubMed  Google Scholar 

  25. Anders H-J, Banas B, Schlöndorff D (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15(4):854–867. https://doi.org/10.1097/01.asn.0000121781.89599.16

    Article  CAS  PubMed  Google Scholar 

  26. Miggin SM, O’neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80(2):220–226. https://doi.org/10.1189/jlb.1105672

    Article  CAS  PubMed  Google Scholar 

  27. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827

    Article  CAS  PubMed  Google Scholar 

  28. Boyd JH, Divangahi M, Yahiaoui L, Gvozdic D, Qureshi S, Petrof BJ (2006) Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-κB and calcineurin. Infect Immun 74(12):6829–6838. https://doi.org/10.1128/IAI.00286-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gregory JL, Morand EF, McKeown SJ, Ralph JA, Hall P, Yang YH et al (2006) Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol 177(11):8072–8079. https://doi.org/10.4049/jimmunol.177.11.8072

    Article  CAS  PubMed  Google Scholar 

  30. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812. https://doi.org/10.1016/j.immuni.2006.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432. https://doi.org/10.1182/blood-2006-06-028704

    Article  CAS  PubMed  Google Scholar 

  32. Schneider S, Unger M, van Griensven M, Balmayor ER (2017) Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res 22(1):17. https://doi.org/10.1186/s40001-017-0258-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taghizadeh M, Noruzinia M (2017) Lovastatin reduces stemness via epigenetic reprograming of BMP2 and GATA2 in human endometrium and endometriosis. Cell J 19(1):50–64. https://doi.org/10.22074/cellj.2016.3894

    Article  PubMed  Google Scholar 

  34. Yazdanpanah A, Madjd Z, Pezeshki-Modaress M, Khosrowpour Z, Farshi P, Eini L et al (2022) Bioengineering of fibroblast-conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering. Artif Organs 46(6):1040–1054. https://doi.org/10.1111/aor.14169

    Article  CAS  PubMed  Google Scholar 

  35. Mastri M, Shah Z, McLaughlin T, Greene CJ, Baum L, Suzuki G et al (2012) Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am J Physiol-Cell Physiol 303(10):C1021–C33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang S, Wang D, Gu F, Zhang Z, Deng W, Chen W et al (2016) No significant effects of Poly(I:C) on human umbilical cord-derived mesenchymal stem cells in the treatment of B6. MRL-Faslpr mice. Curr Res Transl Med 64(2):55–60

    Article  CAS  PubMed  Google Scholar 

  37. Fomeshi MR, Ebrahimi M, Mowla SJ, Khosravani P, Firouzi J, Khayatzadeh H (2015) Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett 20(3):448–465. https://doi.org/10.1515/cmble-2015-0025

    Article  CAS  PubMed  Google Scholar 

  38. Venter C, Niesler C (2019) Rapid quantification of cellular proliferation and migration using ImageJ. Biotechniques 66(2):99–102. https://doi.org/10.2144/btn-2018-0132

    Article  CAS  PubMed  Google Scholar 

  39. Safa M, Jafari L, Alikarami F, Manafi Shabestari R, Kazemi A (2017) Indole-3-carbinol induces apoptosis of chronic myelogenous leukemia cells through suppression of STAT5 and Akt signaling pathways. Tumor Biol 39(6):1010428317705768. https://doi.org/10.1177/1010428317705768

    Article  CAS  Google Scholar 

  40. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ (2007) Mesenchymal stem cells use integrin β1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18(8):2873–2882. https://doi.org/10.1091/mbc.E07-02-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta (BBA) 1836:321–335. https://doi.org/10.1016/j.bbcan.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  42. Gjorgieva D, Zaidman N, Bosnakovski D (2013) Mesenchymal stem cells for anti-cancer drug delivery. Recent Pat Anticancer Drug Discov 8(3):310–318. https://doi.org/10.2174/15748928113089990040

    Article  CAS  PubMed  Google Scholar 

  43. Mira E, Lacalle RA, Gonzalez MA, Gomez-Mouton C, Abad JL, Bernad A et al (2001) A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2(2):151–156. https://doi.org/10.1093/embo-reports/kve027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt A, Ladage D, Schinkothe T, Klausmann U, Ulrichs C, Klinz FJ et al (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24(7):1750–1758. https://doi.org/10.1634/stemcells.2005-0191

    Article  CAS  PubMed  Google Scholar 

  45. Ball SG, Shuttleworth CA, Kielty CM (2007) Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 177(3):489–500. https://doi.org/10.1083/jcb.200608093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ridger VC, Wagner BE, Wallace WA, Hellewell PG (2001) Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol 166(5):3484–3490. https://doi.org/10.4049/jimmunol.166.5.3484

    Article  CAS  PubMed  Google Scholar 

  47. Bonig H, Priestley GV, Papayannopoulou T (2006) Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 107(1):79–86. https://doi.org/10.1182/blood-2005-05-2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE 5(4):e10088. https://doi.org/10.1371/journal.pone.0010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tomchuck SL, Henkle SL, Coffelt SB, Betancourt AM (2012) Toll-like receptor 3 and suppressor of cytokine signaling proteins regulate CXCR4 and CXCR7 expression in bone marrow-derived human multipotent stromal cells. PLoS ONE 7(6):e39592. https://doi.org/10.1371/journal.pone.0039592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X et al (2016) In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther 7(1):160. https://doi.org/10.1186/s13287-016-0420-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant No. 13206 from Iran University of Medical Sciences. We also appreciated the analytical help and Micro Positron Emission Tomography Scan provided by Tehran University of Medical Science Pre-Clinical Core Facilities (TPCF).

Funding

This study was funded by the Grant No. 13206 from Iran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

MS and FE contributed to the study conception and design. Experiment conducted and the data collection were performed by FE and SZ. JK and MSZ contributed reagent or analytical tools. MRF, RMS, and AY analyzed the data. The first draft of the manuscript was written by FE and PBM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majid Safa.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest.

Ethical approval

The procedure performed in present study was in accordance with the ethical principles of the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the ethics committee of the Iran University of Medical Sciences (Code of Ethics: IR.IUMS.REC.1397.1172).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 814.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, F., Zolfaghari, S., Yazdanpanah, A. et al. TLR3 stimulation improves the migratory potency of adipose-derived mesenchymal stem cells through the stress response pathway in the melanoma mouse model. Mol Biol Rep 50, 2293–2304 (2023). https://doi.org/10.1007/s11033-022-08111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08111-8

Keywords

Navigation