Skip to main content

Advertisement

Log in

Non-metabolic role of alpha-enolase in virus replication

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eisenreich W, Rudel T, Heesemann J, Goebel W (2019) How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00042

    Article  Google Scholar 

  2. Pancholi V (2001) Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci 58(7):902–920. https://doi.org/10.1007/PL00000910

    Article  CAS  Google Scholar 

  3. Díaz-Ramos À, Roig-Borrellas A, García-Melero A, López-Alemany R (2012) α-enolase, a multifunctional protein: Its role on pathophysiological situations. J Biomed Biotechnol. https://doi.org/10.1155/2012/156795

    Article  Google Scholar 

  4. Merkulova T, Dehaupas M, Nevers MC, Créminon C, Alameddine H, Keller A (2000) Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 267(12):3735–3743

    Article  CAS  Google Scholar 

  5. Isgrò MA, Bottoni P, Scatena R (2015) Neuron-specifi c enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. https://doi.org/10.1007/978-94-017-7215-0_9

    Article  Google Scholar 

  6. Petrak J et al (2008) Déjà vu in proteomics a hit parade of repeatedly identified differentially expressed proteins. Proteomics 8(9):1744–1749. https://doi.org/10.1002/pmic.200700919

    Article  CAS  Google Scholar 

  7. Owen JB et al (2009) Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with alzheimer’s disease and mild cognitive impairment: Implications for progression of AD. J Proteome Res 8(2):471–482. https://doi.org/10.1021/pr800667a

    Article  CAS  Google Scholar 

  8. Montes A et al (2011) Particular association of clinical and genetic features with autoimmunity to citrullinated α-enolase in rheumatoid arthritis. Arthritis Rheum 63(3):654–661. https://doi.org/10.1002/art.30186

    Article  CAS  Google Scholar 

  9. Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020. https://doi.org/10.1016/j.ygeno.2004.08.010

    Article  CAS  Google Scholar 

  10. Ji H et al (2016) Progress in the biological function of alpha-enolase. Animal Nutrition 2(1):12–17. https://doi.org/10.1016/j.aninu.2016.02.005

    Article  Google Scholar 

  11. Xiang-Chun D et al (2018) Alpha-enolase regulates hepatitis B virus replication through suppression of the interferon signalling pathway. J Viral Hepat 25(3):289–295. https://doi.org/10.1111/jvh.12813

    Article  CAS  Google Scholar 

  12. Kishimoto N et al (2020) Alpha-enolase in viral target cells suppresses the human immunodeficiency virus type 1 integration. Retrovirology 17(1):1–12. https://doi.org/10.1186/s12977-020-00539-9

    Article  CAS  Google Scholar 

  13. Didiasova M, Schaefer L, Wygrecka M (2019) When place matters: shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00061

    Article  Google Scholar 

  14. Konieczna A, Szczepańska A, Sawiuk K, Łyzeń R, Wegrzyn G (2015) Enzymes of the central carbon metabolism: are they linkers between transcription, DNA replication, and carcinogenesis? Med Hypotheses 84(1):58–67. https://doi.org/10.1016/j.mehy.2014.11.016

    Article  CAS  Google Scholar 

  15. Jung DW et al (2013) A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes. ACS Chem Biol. https://doi.org/10.1021/cb300687k

    Article  Google Scholar 

  16. Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G (2018) Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat Commun 9(1):1–34. https://doi.org/10.1038/s41467-018-06376-x

    Article  CAS  Google Scholar 

  17. Sharma S, Jadli M, Singh A, Arora K, Malhotra P (2014) A secretory multifunctional serine protease, DegP of Plasmodium falciparum, plays an important role in thermo-oxidative stress, parasite growth and development. FEBS J 281(6):1679–1699. https://doi.org/10.1111/febs.12732

    Article  CAS  Google Scholar 

  18. Luo Q et al (2011) Constitutive heat shock protein 70 interacts with α-enolase and protects cardiomyocytes against oxidative stress. Free Radic Res 45(11–12):1355–1365. https://doi.org/10.3109/10715762.2011.627330

    Article  CAS  Google Scholar 

  19. Zeng T et al (2021) Alpha-enolase protects hepatocyte against heat stress through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt pathway. Front Genet. https://doi.org/10.3389/fgene.2021.693780

    Article  Google Scholar 

  20. Keller A et al (2007) Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta Gen Subj 1770(6):919–926. https://doi.org/10.1016/j.bbagen.2007.01.015

    Article  CAS  Google Scholar 

  21. Mizukami Y et al (2004) ERK1/2 regulates intracellular ATP levels through α-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem 279(48):50120–50131. https://doi.org/10.1074/jbc.M402299200

    Article  CAS  Google Scholar 

  22. Johnstone SA, Waisman DM, Rattner JB (1992) Enolase is present at the centrosome of HeLa cells. Exp Cell Res 202(2):458–463. https://doi.org/10.1016/0014-4827(92)90099-T

    Article  CAS  Google Scholar 

  23. Wygrecka M et al (2009) Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 113(22):5588–5598. https://doi.org/10.1182/blood-2008-08-170837

    Article  CAS  Google Scholar 

  24. Subramanian A, Miller DM (2000) Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275(8):5958–5965. https://doi.org/10.1074/jbc.275.8.5958

    Article  CAS  Google Scholar 

  25. Kanda T, Raychoudhuri A, Steele R, Sagartz JE, West C, Ray RB (2009) MBP-1 inhibits breast cancer growth and metastasis in immunocompetent mice. Cancer Res 69(24):9354–9359. https://doi.org/10.1158/0008-5472.CAN-09-2974

    Article  CAS  Google Scholar 

  26. Ghosh AK, Steele R, Ray RB (2005) c-myc Promoter-binding protein 1 (MBP-1) regulates prostate cancer cell growth by inhibiting MAPK pathway. J Biol Chem 280(14):14325–14330. https://doi.org/10.1074/jbc.M413313200

    Article  CAS  Google Scholar 

  27. Hsu K-W et al (2009) MBP-1 suppresses growth and metastasis of gastric cancer cells through COX-2. Mol Biol Cell 20(24):5127–5137. https://doi.org/10.1091/mbc.e09-05-0386

    Article  CAS  Google Scholar 

  28. Gao S et al (2014) Mitochondrial binding of α-enolase stabilizes mitochondrial membrane: Its role in doxorubicin-induced cardiomyocyte apoptosis. Arch Biochem Biophys 542:46–55. https://doi.org/10.1016/j.abb.2013.12.008

    Article  CAS  Google Scholar 

  29. Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I (2006) A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 20(12):1609–1620. https://doi.org/10.1101/gad.385706

    Article  CAS  Google Scholar 

  30. Perconti G et al (2017) Pro-invasive stimuli and the interacting protein Hsp70 favour the route of alpha-enolase to the cell surface. Sci Rep 7(1):3841. https://doi.org/10.1038/s41598-017-04185-8

    Article  CAS  Google Scholar 

  31. Dutta S, DasSarma P, DasSarma S, Jarori GK (2015) Immunogenicity and protective potential of a plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles. Malar J 14(1):1–10. https://doi.org/10.1186/s12936-015-0914-x

    Article  CAS  Google Scholar 

  32. Ogino T, Yamadera T, Mizumoto K, Ogino T, Nonaka T, Imajoh-Ohmi S (2001) Enolase, a cellular glycolytic enzyme, is required for efficient transcription of Sendai virus genome. Biochem Biophys Res Commun 285(2):447–455. https://doi.org/10.1006/bbrc.2001.5160

    Article  CAS  Google Scholar 

  33. Kishimoto N, Iga N, Yamamoto K, Takamune N, Misumi S (2017) Virion-incorporated alpha-enolase suppresses the early stage of HIV-1 reverse transcription. Biochem Biophys Res Commun 484(2):278–284. https://doi.org/10.1016/j.bbrc.2017.01.096

    Article  CAS  Google Scholar 

  34. Higa LM et al (2014) Modulation of α-enolase post-translational modifications by dengue virus: Increased secretion of the basic isoforms in infected hepatic cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0088314

    Article  Google Scholar 

  35. Zhao T, Huang X, Xia Y (2016) Human heart cell proteins interacting with a C-terminally truncated 2A protein of coxsackie B3 virus: identification by the yeast two-hybrid system. Virus Genes 52(2):172–178. https://doi.org/10.1007/s11262-015-1270-1

    Article  CAS  Google Scholar 

  36. Cooper JA, Reiss NA, Schwartz RJ, Hunter T (1983) Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature. https://doi.org/10.1038/302218a0

    Article  Google Scholar 

  37. Takashima M et al (2005) Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 5(6):1686–1692. https://doi.org/10.1002/pmic.200401022

    Article  CAS  Google Scholar 

  38. Jung YJ et al (2013) c-Myc-mediated overexpression of miR-17–92 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol. https://doi.org/10.1002/jmv.23534

    Article  Google Scholar 

  39. Carter KL, Cahir-McFarland E, Kieff E (2002) Epstein-barr virus-induced changes in B-lymphocyte gene expression. J virology 76(20):10427–10436. https://doi.org/10.1128/JVI.76.20.10427

    Article  CAS  Google Scholar 

  40. Singh RK, Lang F, Pei Y, Jha HC, Robertson ES (2018) Metabolic reprogramming of Kaposi’s sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 14(5):1–28. https://doi.org/10.1371/journal.ppat.1007062

    Article  CAS  Google Scholar 

  41. Valiya Veettil M et al (2020) Kaposi’s sarcoma-associated herpesvirus infection induces the expression of neuroendocrine genes in endothelial cells. J Virol 94(8):1–20. https://doi.org/10.1128/jvi.01692-19

    Article  CAS  Google Scholar 

  42. Kim W et al (2003) Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res 9(15):5493–5500

    CAS  Google Scholar 

  43. Muñoz MDL, Limón-Camacho G, Tovar R, Diaz-Badillo A, Mendoza-Hernández G, Black WC (2013) Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. Biomed Res Int. https://doi.org/10.1155/2013/875958

    Article  Google Scholar 

  44. Singh B, Fleury C, Jalalvand F, Riesbeck K (2012) Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 36(6):1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x

    Article  CAS  Google Scholar 

  45. Sha J et al (2009) Surface-expressed enolase contributes to the pathogenesis of clinical isolate ssu of Aeromonas hydrophilaa. J Bacteriol 191(9):3095–3107. https://doi.org/10.1128/JB.00005-09

    Article  CAS  Google Scholar 

  46. Fréret M, Rottenberg P, Calbo S, Lequerré T, Vittecoq O (2017) 08.02 Alpha-enolase promotes pro-inflammatory phenotype of monocytes-derived macrophages in vitro. Ann Rheum Dis 76:A75 https://doi.org/10.1136/annrheumdis-2016-211055.2.

  47. Zakrzewicz D et al (2016) Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells. Sci Rep 6:37758. https://doi.org/10.1038/srep37758

    Article  CAS  Google Scholar 

  48. McMahon SB (2014) MYC and the control of apoptosis. Cold Spring Harb Perspect Med 4(7):1–9. https://doi.org/10.1101/cshperspect.a014407

    Article  CAS  Google Scholar 

  49. Yost KG, Vandemark PJ (1978) Growth inhibition of Streptococcus mutans and Leuconostoc mesenteroides by sodium fluoride and ionic tin. Appl Environ Microbiol. https://doi.org/10.1128/aem.35.5.920-924.1978

    Article  Google Scholar 

  50. Lebioda L, Zhang E, Lewinski K, Brewer JM (1993) Fluoride inhibition of yeast enolase: crystal structure of the enolase–Mg2+–F−–Pi complex at 2.6 Å resolution. Proteins Struct Funct Bioinform. https://doi.org/10.1002/prot.340160302

    Article  Google Scholar 

  51. G C (1972) The inhibition of enolase by fluoride in vitro. Caries Res 6(2):93–102. https://doi.org/10.1159/000259782

    Article  Google Scholar 

  52. Lung J et al (2017) In silico-based identification of human α-enolase inhibitors to block cancer cell growth metabolically. Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S149214

    Article  Google Scholar 

  53. Satani N, Lin YH, Hammoudi N, Raghavan S, Georgiou DK, Muller FL (2016) ENOblock does not inhibit the activity of the glycolytic enzyme enolase. PLoS ONE. https://doi.org/10.1371/journal.pone.0168739

    Article  Google Scholar 

  54. Leonard PG et al (2016) SF2312 is a natural phosphonate inhibitor of enolase. Nat Chem Biol. https://doi.org/10.1038/nchembio.2195

    Article  Google Scholar 

  55. Lin YH et al (2020) An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nat Metab. https://doi.org/10.1038/s42255-020-00313-3

    Article  Google Scholar 

  56. Yan VC, Yang KL, Ballato ES, Arthur K, Georgiou DK, Muller FL (2020) Bioreducible pro-drug Inhibitors of Enolase. ChemRxiv. https://doi.org/10.26434/chemrxiv.12033303.v1

    Article  Google Scholar 

  57. Rodríguez A, de La Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355(Pt 3):625–631. https://doi.org/10.1042/bj3550625

    Article  Google Scholar 

  58. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23(20):7315–7328. https://doi.org/10.1128/MCB.23.20.7315-7328.2003

    Article  CAS  Google Scholar 

  59. Danial NN et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956. https://doi.org/10.1038/nature01825

    Article  CAS  Google Scholar 

  60. Sen S et al (2015) Role of hexokinase-1 in the survival of HIV-1-infected macrophages. Cell Cycle 14(7):980–989. https://doi.org/10.1080/15384101.2015.1006971

    Article  CAS  Google Scholar 

  61. Niinaka Y, Paku S, Haga A, Watanabe H, Raz A (1998) Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Res 58(12):2667–2674

    CAS  Google Scholar 

  62. Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S (2012) Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 9(1):65. https://doi.org/10.1186/1742-4690-9-65

    Article  CAS  Google Scholar 

  63. Leroy B, Gillet L, Vanderplasschen A, Wattiez R (2016) Structural proteomics of herpesviruses. Viruses. https://doi.org/10.3390/v8020050

    Article  Google Scholar 

  64. Ritterson Lew C, Tolan DR (2012) Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J Biol Chem 287(51):42554–42563. https://doi.org/10.1074/jbc.M112.405969

    Article  CAS  Google Scholar 

  65. Yu Q et al (2017) Regulation of SESAME-mediated H3T11 phosphorylation by glycolytic enzymes and metabolites. PLoS ONE. https://doi.org/10.1371/journal.pone.0175576

    Article  Google Scholar 

  66. Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114(2):255–266. https://doi.org/10.1016/s0092-8674(03)00552-x

    Article  CAS  Google Scholar 

  67. Berry MD, Boulton AA (2000) Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J Neurosci Res 60(2):150–154. https://doi.org/10.1002/(SICI)1097-4547(20000415)60:2%3c150::AID-JNR3%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  68. Sirover MA (1997) Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem 66(2):133–140

    Article  CAS  Google Scholar 

  69. Choudhary S, De BP, Banerjee AK (2000) Specific phosphorylated forms of glyceraldehyde 3-phosphate dehydrogenase associate with human parainfluenza virus type 3 and inhibit viral transcription in vitro. J Virol 74(8):3634–3641. https://doi.org/10.1128/jvi.74.8.3634-3641.2000

    Article  CAS  Google Scholar 

  70. Kishimoto N, Onitsuka A, Kido K, Takamune N, Shoji S, Misumi S (2012) Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection. Retrovirology 9:1–12. https://doi.org/10.1186/1742-4690-9-107

    Article  CAS  Google Scholar 

  71. Chertova E et al (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80(18):9039–9052. https://doi.org/10.1128/JVI.01013-06

    Article  CAS  Google Scholar 

  72. Zhang D et al (2017) Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene 36(20):2900–2909. https://doi.org/10.1038/onc.2016.446

    Article  CAS  Google Scholar 

  73. Linde ME et al (2013) The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res 12(5):2045–2054. https://doi.org/10.1021/pr300918r

    Article  CAS  Google Scholar 

  74. Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P (2008) Cellular proteins in influenza virus particles. PLoS Pathog 4(6):1–14. https://doi.org/10.1371/journal.ppat.1000085

    Article  CAS  Google Scholar 

  75. Varnum SM et al (2004) Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78(23):13395. https://doi.org/10.1128/jvi.78.23.13395.2004

    Article  CAS  Google Scholar 

  76. McKnight KL, Xie L, González-López O, Rivera-Serrano EE, Chen X, Lemon SM (2017) Protein composition of the hepatitis A virus quasi-envelope. Proc Natl Acad Sci U S A 114(25):6587–6592. https://doi.org/10.1073/pnas.1619519114

    Article  CAS  Google Scholar 

  77. Sviben D, Forcic D, Halassy B, Allmaier G, Marchetti-Deschmann M, Brgles M (2018) Mass spectrometry-based investigation of measles and mumps virus proteome 11 medical and health sciences 1108 medical microbiology. Virol J 15(1):1–14. https://doi.org/10.1186/s12985-018-1073-9

    Article  CAS  Google Scholar 

  78. Alejo A, Matamoros T, Guerra M, Andrés G (2018) A proteomic atlas of the african swine fever virus particle. J Virol 92(23):1–18. https://doi.org/10.1128/jvi.01293-18

    Article  CAS  Google Scholar 

  79. Radhakrishnan A et al (2010) Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 9(9):1829–1848. https://doi.org/10.1074/mcp.M110.001651

    Article  CAS  Google Scholar 

  80. Moerdyk-Schauwecker M, il Hwang S, Grdzelishvili VZ (2009) Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J. https://doi.org/10.1186/1743-422X-6-166

    Article  Google Scholar 

  81. Zhu FX, Chong JM, Wu L, Yuan Y (2005) Virion proteins of kaposi’s sarcoma-associated herpesvirus. J Virol 79(2):800–811. https://doi.org/10.1128/jvi.79.2.800-811.2005

    Article  CAS  Google Scholar 

  82. Kong Q et al (2010) Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 8:1–10. https://doi.org/10.1186/1477-5956-8-29

    Article  CAS  Google Scholar 

  83. Alquraishi M et al (2019) Pyruvate kinase M2: a simple molecule with complex functions. Free Radic Biol Med 143:176–192. https://doi.org/10.1016/j.freeradbiomed.2019.08.007

    Article  CAS  Google Scholar 

  84. Lee S-A, Ho C, Troxler M, Lin C-Y, Chung S-H (2021) Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein. Viruses. https://doi.org/10.3390/v13030433

    Article  Google Scholar 

  85. Mouree KR et al (2018) Virion-packaged pyruvate kinase muscle type 2 affects reverse transcription efficiency of human immunodeficiency virus type 1 by blocking virion recruitment of tRNALys3. Biol Pharm Bull 41(4):612–618. https://doi.org/10.1248/bpb.b17-00991

    Article  CAS  Google Scholar 

  86. Sen S, Deshmane SL, Kaminski R, Amini S, Datta PK (2017) Non-metabolic role of PKM2 in regulation of the HIV-1 LTR. J Cell Physiol 232(3):517–525. https://doi.org/10.1002/jcp.25445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RK acknowledges the Women-Scientist research grant (File No.R.12013/08/2019-HR) from Department of Health Research, Ministry of Health and Family Welfare, Govt. of India. The authors acknowledge the research grant (52/08/2019/BIO/BMS) from Indian Council of Medical Research, Govt. of India for their financial support.

Funding

Department of Health Research,R.12013/08/2019-HR,Ruma Karmakar,Indian Council of Medical Research,52/08/2019/BIO/BMS,Maitreyi S Rajala

Author information

Authors and Affiliations

Authors

Contributions

SV and MR: conceived and designed the review. SV, RK, MR and AK: written the review.

Corresponding author

Correspondence to Maitreyi S. Rajala.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadlamani, S., Karmakar, R., Kumar, A. et al. Non-metabolic role of alpha-enolase in virus replication. Mol Biol Rep 50, 1677–1686 (2023). https://doi.org/10.1007/s11033-022-08067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08067-9

Keywords

Navigation