Skip to main content

Advertisement

Log in

HPV 16 E6 promotes growth and metastasis of esophageal squamous cell carcinoma cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies worldwide. Increasing evidence suggests that human papillomavirus (HPV) infection may be associated with the etiology of ESCC. However, the precise role of HPV in ESCC remains unclear.

Methods and results

Proliferation and apoptosis of ESCC cells upon infection with HPV16 E6 were detected using CCK-8 assays and Western blot analyses. The migration rate was measured with a wound healing assay, and a Transwell Matrigel invasion assay was used to detect the invasive ability. RT-qPCR was performed to detect the expression of E6AP, p53, and miR-34a. The proliferation rates were significantly higher in HPV16E6-transfected cell groups compared with the negative control groups. Bax protein expression was downregulated in HPV16E6-treated groups compared to the controls. The wound healing and Transwell Matrigel invasion assays indicated that HPV16 E6 infection could increase ESCC cell migration and invasion. Furthermore, E6AP, p53 and miR-34a expression were decreased in HPV16 E6-transfected cell lines.

Conclusion

Our results not only provide evidence that HPV16 E6 promotes cell proliferation, migration, and invasion in ESCC, but also suggests a correlation between HPV infection and E6AP, p53 and miR-34a expression. Consequently, HPV16 E6 may play an important role in ESCC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets obtained and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  3. Liu K, Zhao T, Wang J, Chen Y, Zhang R, Lan X, Que J (2019) Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett 458:21–28

    Article  CAS  Google Scholar 

  4. Barbato L, Bocchetti M, di Biase A, Regad T (2019) Cancer stem cells and Targeting Strategies. Cells. https://doi.org/10.3390/cells8080926

    Article  Google Scholar 

  5. Lagergren J, Smyth E, Cunningham D, Lagergren P (2017) Oesophageal cancer. Lancet 390(10110):2383–2396

    Article  Google Scholar 

  6. Munari FF, Sichero L, Carloni AC, Lacerda CF, Nunes EM, de Scapulatempo-Neto ATT, da Silva SRM, Crema E, Adad SJ et al (2022) Frequency of human papillomavirus detection in Chagasic megaesophagus associated or not with esophageal squamous cell carcinoma. Pathobiology. 89(1):29–37

    Article  CAS  Google Scholar 

  7. Petrelli F, De Santi G, Rampulla V, Ghidini A, Mercurio P, Mariani M, Manara M, Rausa E, Lonati V, Viti M et al (2021) Human papillomavirus (HPV) types 16 and 18 infection and esophageal squamous cell carcinoma: a systematic review and meta-analysis. J Cancer Res Clin Oncol 147(10):3011–3023

    Article  Google Scholar 

  8. Rajendra S, Pavey D, McKay; O, Merrett N, Gautam SD (2020) Human papillomavirus infection in esophageal squamous cell carcinoma and esophageal adenocarcinoma: a concise review. Ann N Y Acad Sci 1482(1):36–48

    Article  CAS  Google Scholar 

  9. Ren S, Gaykalova DA, Guo T, Favorov AV, Fertig EJ, Tamayo P, Callejas-Valera JL, Allevato M, Gilardi M, Santos J et al (2020) HPV E2, E4, E5 drive alternative carcinogenic pathways in HPV positive cancers. Oncogene 39(40):6327–6339

    Article  CAS  Google Scholar 

  10. Allouch S, Malki A, Allouch A, Gupta I, Vranic S, Al Moustafa AE (2020) High-risk HPV oncoproteins and PD-1/PD-L1 interplay in human cervical cancer: recent evidence and future directions. Front Oncol 10:914

    Article  Google Scholar 

  11. Pal A, Kundu R (2019) Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 10:3116

    Article  Google Scholar 

  12. Dizanzo MP, Marziali F, Brunet Avalos C, Bugnon Valdano M, Leiva S, Cavatorta AL, Gardiol D (2020) HPV E6 and E7 oncoproteins cooperatively alter the expression of Disc Large 1 polarity protein in epithelial cells. BMC Cancer 20(1):293

    Article  CAS  Google Scholar 

  13. Hu JM, Li L, Chen YZ, Pang LJ, Yang L, Liu CX, Zhao J, Chang B, Zou H, Qi Y et al (2013) Human papillomavirus type 16 infection may be involved in esophageal squamous cell carcinoma carcinogenesis in Chinese Kazakh patients. Dis Esophagus 26(7):703–707

    CAS  Google Scholar 

  14. Rajendra S, Pavey D, McKay; O, Merrett N, Gautam SD, (2020) Human papillomavirus infection in esophageal squamous cell carcinoma and esophageal adenocarcinoma: a concise review. Ann N Y Acad Sci. 1482(1):36–48

    Article  CAS  Google Scholar 

  15. Yuan X, Liu K, Li Y, Zhang AZ, Wang XL, Jiang CH, Liang WH, Zhang HJ, Pang LJ, Li M et al (2021) HPV16 infection promotes an M2 macrophage phenotype to promote the invasion and metastasis of esophageal squamous cell carcinoma. Clin Transl Oncol 23(11):2382–2393

    Article  CAS  Google Scholar 

  16. Hu J, Ge W, Xu J (2016) HPV 16 E7 inhibits OSCC cell proliferation, invasion, and metastasis by upregulating the expression of miR-20a. Tumour Biol 37(7):9433–9440

    Article  CAS  Google Scholar 

  17. Antonsson A, Nancarrow DJ, Brown IS, Green AC, Drew PA, Watson DI, Hayward NK, Whiteman DC (2010) Australian Cancer, High-risk human papillomavirus in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 19(8):2080–2087

    Article  CAS  Google Scholar 

  18. Antunes LC, Prolla JC, de Barros Lopes A, da Rocha MP, Fagundes RB (2013) No evidence of HPV DNA in esophageal squamous cell carcinoma in a population of Southern Brazil. World J Gastroenterol 19(39):6598–6603

    Article  Google Scholar 

  19. Hu H, Yang J, Sun Y, Yang Y, Qian J, Jin L, Wang M, Bi R, Zhang R, Zhu M et al (2012) Putatively functional PLCE1 variants and susceptibility to esophageal squamous cell carcinoma (ESCC): a case-control study in eastern Chinese populations. Ann Surg Oncol 19(7):2403–2410

    Article  Google Scholar 

  20. Chen WG, Yang CM, Xu LH, Zhang N, Liu XY, Ma YG, Huo XL, Han YS, Tian DA, Zheng Y (2014) Gene chip technology used in the detection of HPV infection in esophageal cancer of Kazakh Chinese in Xinjiang Province. J Huazhong Univ Sci Technolog Med Sci 34(3):343–347

    Article  CAS  Google Scholar 

  21. Lu XM, Monnier-Benoit S, Mo LZ, Xu SY, Pretet JL, Liu Z, Vuitton DA, Mougin C (2008) Human papillomavirus in esophageal squamous cell carcinoma of the high-risk Kazakh ethnic group in Xinjiang, China. Eur J Surg Oncol 34(7):765–770

    Article  CAS  Google Scholar 

  22. Zou N, Yang L, Chen L, Li T, Jin T, Peng H, Zhang S, Wang D, Li R, Liu C et al (2015) Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations. J Exp Clin Cancer Res 34:70

    Article  Google Scholar 

  23. Pastrez PRA, Mariano VS, da Costa AM, Silva EM, Scapulatempo-Neto C, Guimaraes DP, Fava G, Neto SAZ, Nunes EM, Sichero L et al (2017) The Relation of HPV Infection and Expression of p53 and p16 Proteins in Esophageal Squamous Cells Carcinoma. J Cancer 8(6):1062–1070

    Article  CAS  Google Scholar 

  24. Chen J, Zhao KN (2015) HPV-p53-miR-34a axis in HPV-associated cancers. Ann Transl Med 3(21):331

    Google Scholar 

  25. Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H (2020) Characterization of a p53/miR-34a/CSF1R/STAT3 Feedback Loop in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 10(2):391–418

    Article  Google Scholar 

  26. Sun H, Tian J, Xian W, Xie T, Yang X (2015) miR-34a inhibits proliferation and invasion of bladder cancer cells by targeting orphan nuclear receptor HNF4G. Dis Markers 2015: 879254

    Article  Google Scholar 

  27. Jun HH, Kwack K, Lee KH, Kim JO, Park HS, Ryu CS, Lee JY, Ko D, Kim JW, Kim NK (2019) Association between TP53 genetic polymorphisms and the methylation and expression of miR-34a, 34b/c in colorectal cancer tissues. Oncol Lett 17(5):4726–4734

    CAS  Google Scholar 

  28. Shi H, Zhou S, Liu J, Zhu J, Xue J, Gu L, Chen Y (2016) miR-34a inhibits the in vitro cell proliferation and migration in human esophageal cancer. Pathol Res Pract 212(5):444–449

    Article  CAS  Google Scholar 

  29. Najjary S, Mohammadzadeh R, Mansoori B, Vahidian F, Mohammadi A, Doustvandi MA, Khaze V, Hajiasgharzadeh K, Baradaran B (2021) Combination therapy with miR-34a and doxorubicin synergistically induced apoptosis in T-cell acute lymphoblastic leukemia cell line. Med Oncol 38(12):142

    Article  CAS  Google Scholar 

  30. Xiao Z, Liu Y, Zhao J, Li L, Hu L, Lu Q, Zeng Z, Liu X, Huang D, Yang W et al (2020) Long noncoding RNA LINC01123 promotes the proliferation and invasion of hepatocellular carcinoma cells by modulating the miR-34a-5p/TUFT1 axis. Int J Biol Sci 16(13):2296–2305

    Article  CAS  Google Scholar 

  31. Wang H, Jiao H, Jiang Z, Chen R (2020) Propofol inhibits migration and induces apoptosis of pancreatic cancer PANC-1 cells through miR-34a-mediated E-cadherin and LOC285194 signals. Bioengineered 11(1):510–521

    Article  CAS  Google Scholar 

  32. Zhong S, Golpon H, Zardo P, Borlak J (2021) miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 230:164–196

    Article  CAS  Google Scholar 

  33. He J, Zhao H, Liu X, Wang D, Wang Y, Ai Y, Yang J (2020) Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosomemediated circHMGCS1 via the miR34a5p/SGPP1 axis. Oncol Rep 44(6):2429–2442

    Article  CAS  Google Scholar 

  34. Wang X, Zhao Y, Lu Q, Fei X, Lu C, Li C, Chen H (2020) MiR-34a-5p Inhibits Proliferation, Migration, Invasion and Epithelial-mesenchymal Transition in Esophageal Squamous Cell Carcinoma by Targeting LEF1 and Inactivation of the Hippo-YAP1/TAZ Signaling Pathway. J Cancer 11(10):3072–3081

    Article  CAS  Google Scholar 

  35. Zuo Y, Zheng W, Liu J, Tang Q, Wang SS, Yang XS (2020) MiR-34a-5p/PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells. Neoplasma 67(1):93–101

    Article  CAS  Google Scholar 

  36. Sun P, Feng Y, Guo H, Li R, Yu P, Zhou X, Pan Z, Liang Y, Yu B, Zheng Y et al (2020) MiR-34a Inhibits Cell Proliferation and Induces Apoptosis in Human Nasopharyngeal Carcinoma by Targeting lncRNA MCM3AP-AS1. Cancer Manag Res 12:4799–4806

    Article  CAS  Google Scholar 

  37. Ge X, Gao J, Sun QW, Wang CX, Deng W, Mao GY, Li HQ, Guo SS, Cheng J, Wu YN et al (2020) MiR-34a inhibits the proliferation, migration, and invasion of oral squamous cell carcinoma by directly targeting SATB2. J Cell Physiol 235(5):4856–4864

    Article  CAS  Google Scholar 

  38. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    Article  CAS  Google Scholar 

  39. Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A et al (2016) Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529(7587):541–545

    Article  CAS  Google Scholar 

  40. Ribeiro J, Sousa H (2014) MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a. Mol Biol Rep 41(3):1525–1531

    Article  CAS  Google Scholar 

  41. Klein S, Quaas A, Quantius J, Loser H, Meinel J, Peifer M, Wagner S, Gattenlohner S, Wittekindt C, von Doeberitz M et al (2021) Deep Learning Predicts HPV Association in Oropharyngeal Squamous Cell Carcinomas and Identifies Patients with a Favorable Prognosis Using Regular H&E Stains. Clin Cancer Res 27(4):1131–1138

    Article  CAS  Google Scholar 

  42. Sijuan T, Li Z, Yang T (2020) Human Papillomavirus E7 Oncoprotein Promotes Proliferation and Migration through the Transcription Factor E2F1 in Cervical Cancer Cells. Anti-cancer Agents Med Chem 13:1689–1696

    Google Scholar 

  43. Warren CFA, Wong-Brown MW, Bowden NA (2019) BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 10(3):177

    Article  Google Scholar 

  44. Song S, Chen Q, Li Y, Lei G, Scott A, Huo L, Li CY, Estrella JS, Correa A, Pizzi MP et al (2021) Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut 70(12):2238–2248

    Article  CAS  Google Scholar 

  45. Zheng Q, Wang B, Gao J, Xin N, Wang W, Song X, Shao Y, Zhao C (2018) CD155 knockdown promotes apoptosis via AKT/Bcl-2/Bax in colon cancer cells. J Cell Mol Med 22(1):131–140

    Article  CAS  Google Scholar 

  46. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J (2016) Direct Activation of Bax Protein for Cancer Therapy. Med Res Rev 36(2):313–341

    Article  CAS  Google Scholar 

  47. Hu D, Zhou J, Wang F, Shi H, Li Y, Li B (2015) HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo. Arch Gynecol Obstet 292(6):1345–1354

    Article  CAS  Google Scholar 

  48. Klein CA (2020) Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer 20(11):681–694

    Article  CAS  Google Scholar 

  49. Artaza-Irigaray C, Molina-Pineda A, Aguilar-Lemarroy A, Ortiz-Lazareno P, Limon-Toledo LP, Pereira-Suarez AL, Rojo-Contreras W (2019) Jave-Suarez, E6/E7 and E6(*) From HPV16 and HPV18 Upregulate IL-6 Expression Independently of p53 in Keratinocytes. Front Immunol 10:1676

    Article  CAS  Google Scholar 

  50. Duprez F, Berwouts D, De Neve W, Bonte K, Boterberg T, Deron P, Huvenne W, Rottey S, Mareel M (2017) Distant metastases in head and neck cancer. Head Neck 39(9):1733–1743

    Article  Google Scholar 

  51. Dogantemur S, Ozdemir S, Uguz A, Surmelioglu O, Dagkiran M, Tarkan O, Tuncer U (2020) Assessment of HPV 16, HPV 18, p16 expression in advanced stage laryngeal cancer patients and prognostic significance. Braz J Otorhinolaryngol 86(3):351–357

    Article  Google Scholar 

  52. Hu J, Li L, Pang L, Chen Y, Yang L, Liu C, Zhao J, Chang B, Qi Y, Liang W et al (2012) HLA-DRB1*1501 and HLA-DQB1*0301 alleles are positively associated with HPV16 infection-related Kazakh esophageal squamous cell carcinoma in Xinjiang China. Cancer Immunol Immunother 61(11):2135–2141

    Article  Google Scholar 

  53. Wang L, Li J, Hou J, Li M, Cui X, Li S, Yu X, Zhang Z, Liang W, Jiang J et al (2016) p53 expression but not p16INK4A correlates with human papillomavirus-associated esophageal squamous cell carcinoma in Kazakh population. Infect Agents Cancer 11(1):1–8

    Article  Google Scholar 

  54. Yang L, Song X, Zhu J, Li M, Ji Y, Wu F, Chen Y, Cui X, Hu J, Wang L et al (2017) Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol 51(1):378–388

    Article  CAS  Google Scholar 

  55. Wang L, Li J, Hou J, Li M, Cui X, Li S, Yu X, Zhang Z, Liang W, Jiang J et al (2016) p53 expression but not p16(INK4A) correlates with human papillomavirus-associated esophageal squamous cell carcinoma in Kazakh population. Infect Agent Cancer 11:19

    Article  Google Scholar 

  56. Masuda Y, Saeki Y, Arai N, Kawai H, Kukimoto I, Tanaka K, Masutani C (2019) Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. J Biol Chem 294(41):14860–14875

    Article  CAS  Google Scholar 

  57. Conrady MC, Suarez I, Gogl G, Frecot DI, Bonhoure A, Kostmann C, Cousido-Siah A, Mitschler A, Lim J, Masson M et al (2020) Structure of high-risk papillomavirus 31 E6 oncogenic protein and characterization of E6/E6AP/p53 complex formation. J Virol. 95(2):e0073020

    Article  Google Scholar 

  58. Li S, Hong X, Wei Z, Xie M, Li W, Liu G, Guo H, Yang J, Wei W, Zhang S (2019) Ubiquitination of the HPV Oncoprotein E6 Is Critical for E6/E6AP-Mediated p53 Degradation. Front Microbiol 10:2483

    Article  Google Scholar 

  59. Thomas M, Tomaic V, Pim D, Myers MP, Tommasino M, Banks L (2013) Interactions between E6AP and E6 proteins from alpha and beta HPV types. Virology 435(2):357–362

    Article  CAS  Google Scholar 

  60. Bandilovska I, Keam SP, Gamell C, Machicado C, Haupt S, Haupt Y (2019) E6AP goes viral: the role of E6AP in viral- and non-viral-related cancers. Carcinogenesis 40(6):707–714

    Article  CAS  Google Scholar 

  61. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK et al (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv303

    Article  Google Scholar 

  62. Yang X, Shang P, Yu B, Jin Q, Liao J, Wang L, Ji J, Guo X (2021) Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of Snail through suppressing Notch/NF-kappaB and RAS/RAF/MEK/ERK signaling pathway. Acta Pharm Sin B 11(9):2819–2834

    Article  CAS  Google Scholar 

  63. Zhang L, Liao Y, Tang L (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1):53

    Article  Google Scholar 

  64. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626

    Article  CAS  Google Scholar 

  65. Li B, Hu Y, Ye F, Li Y, Lv W, Xie X (2010) Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 20(4):597–604

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Chinese Academy of Medical Sciences and Fuxiang biotechnology of shanghai for providing cell lines.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81860518, No. 81260301).

Author information

Authors and Affiliations

Authors

Contributions

YL, XBC, JMH and FL conceived of and supervised this study. JJH, YJ and TTM performed experiments. SYZ analysed the data. JJH, and YJ wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Lan Yang or Feng Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or other disclosures to report.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ji, Y., Miao, T. et al. HPV 16 E6 promotes growth and metastasis of esophageal squamous cell carcinoma cells in vitro. Mol Biol Rep 50, 1181–1190 (2023). https://doi.org/10.1007/s11033-022-07952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07952-7

Keywords

Navigation