Skip to main content

Advertisement

Log in

Omega-3 fatty acids in the treatment of spinal cord injury: untapped potential for therapeutic intervention?

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Omega-3 fatty acids constitute a group of fatty acids with anti-inflammatory and preventive effects against various diseases. Studies in animal models have demonstrated the preventive and therapeutic effects of omega-3 fatty acids after spinal cord injury (SCI) in reducing inflammatory reactions and promoting neuroregeneration. However, studies on the efficacy of omega-3 fatty acids in treatment and prevention after SCI seem to be questionable. This study evaluates potential reasons for omega-3 fatty acid therapy oversight in populations after SCI. Therefore, some of the reasons could cover heterogeneous patient groups in size, level of injury, quality of life assessment, time since injury, no single standardised dose, various follow-up durations and metabolic changes, often insufficient to record. Due to the difficulty of collecting cases for the study, especially in the acute phase after SCI, multicenter, coordinated studies are needed to establish the effects of omega-3 fatty acids on treatment, recovery, and disease prevention in patients after SCI. Although the present results of such studies are still inconclusive, the failure to exploit the potential properties of omega-3 fatty acids in the treatment of patients with SCI solely due to methodological difficulties should be considered a potential waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Avallone R, Vitale G, Bertolotti M (2019) Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci 20(17):4256. https://doi.org/10.3390/ijms20174256

    Article  CAS  PubMed Central  Google Scholar 

  2. Cholewski M, Tomczykowa M, Tomczyk M (2018) A comprehensive review of chemistry, sources and bioavailability of Omega-3 fatty acids. Nutrients 10(11):1662. https://doi.org/10.3390/nu10111662

    Article  CAS  PubMed Central  Google Scholar 

  3. Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415(2):154–158. https://doi.org/10.1016/j.neulet.2007.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shahidi F, Ambigaipalan P (2018) Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 25(9):345–381. https://doi.org/10.1146/annurev-food-111317-095850

    Article  CAS  Google Scholar 

  5. Tur JA, Bibiloni MM, Sureda A, Pons A (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr 107(Suppl 2):S23-52. https://doi.org/10.1017/S0007114512001456

    Article  CAS  PubMed  Google Scholar 

  6. Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH (2009) Omega-3 fatty acids: a comprehensive review of their role in health and disease. Postgrad Med J 85(1000):84–90. https://doi.org/10.1136/pgmj.2008.073338

    Article  CAS  PubMed  Google Scholar 

  7. Pu H, Jiang X, Wei Z, Hong D, Hassan S, Zhang W, Liu J, Meng H, Shi Y, Chen L, Chen J (2017) Repetitive and prolonged Omega-3 fatty acid treatment after traumatic brain injury enhances long-term tissue restoration and cognitive recovery. Cell Transplant 26(4):555–569. https://doi.org/10.3727/096368916X693842

    Article  PubMed  PubMed Central  Google Scholar 

  8. Denis I, Potier B, Vancassel S, Heberden C, Lavialle M (2013) Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 12(2):579–594. https://doi.org/10.1016/j.arr.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Patch CS, Hill-Yardin EL, Lewis M, Ryan L, Daly E, Pearce AJ (2021) The more, the better: high-dose Omega-3 fatty acids improve behavioural and molecular outcomes in preclinical models in mild brain injury. Curr Neurol Neurosci Rep 21(9):45. https://doi.org/10.1007/s11910-021-01132-z

    Article  CAS  PubMed  Google Scholar 

  10. King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26(17):4672–4680. https://doi.org/10.1523/JNEUROSCI.5539-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan CO, Battaglino RA, Morse LR (2013) Spinal cord injury and osteoporosis: causes, mechanisms, and rehabilitation strategies. Int J Phys Med Rehabil 1:127

    PubMed  PubMed Central  Google Scholar 

  12. Furlan JC, Gulasingam S, Craven BC (2017) The health economics of the spinal cord injury or disease among veterans of war: a systematic review. J Spinal Cord Med 40(6):649–664. https://doi.org/10.1080/10790268.2017.1368267

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michael-Titus AT, Priestley JV (2014) Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity? Trends Neurosci 37(1):30–38. https://doi.org/10.1016/j.tins.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  14. Trépanier MO, Hopperton KE, Orr SK, Bazinet RP (2016) N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 15(785):187–206. https://doi.org/10.1016/j.ejphar.2015.05.045

    Article  CAS  Google Scholar 

  15. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379. https://doi.org/10.1016/s0753-3322(02)00253-6

    Article  CAS  PubMed  Google Scholar 

  16. Simopoulos AP (2016) An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3):128. https://doi.org/10.3390/nu8030128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanna VS, Hafez EAA (2018) Synopsis of arachidonic acid metabolism: a review. J Adv Res 13(11):23–32. https://doi.org/10.1016/j.jare.2018.03.005

    Article  CAS  Google Scholar 

  18. Innes JK, Calder PC (2018) Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 132:41–48. https://doi.org/10.1016/j.plefa.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  19. Das UN (2021) Essential fatty acids and their metabolites in the pathobiology of inflammation and Its resolution. Biomolecules 11(12):1873. https://doi.org/10.3390/biom11121873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Araujo P, Belghit I, Aarsæther N, Espe M, Lucena E, Holen E (2019) The effect of Omega-3 and Omega-6 polyunsaturated fatty acids on the production of cyclooxygenase and lipoxygenase metabolites by human umbilical vein endothelial cells. Nutrients 11(5):966. https://doi.org/10.3390/nu11050966

    Article  CAS  PubMed Central  Google Scholar 

  21. Dong L, Zou H, Yuan C, Hong YH, Kuklev DV, Smith WL (2016) Different fatty acids compete with Arachidonic Acid for binding to the allosteric or catalytic subunits of cyclooxygenases to regulate prostanoid synthesis. J Biol Chem 291(8):4069–4078. https://doi.org/10.1074/jbc.M115.698001

    Article  CAS  PubMed  Google Scholar 

  22. Zivkovic AM, Telis N, German JB, Hammock BD (2011) Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric (Berkeley) 65(3):106–111. https://doi.org/10.3733/ca.v065n03p106

    Article  Google Scholar 

  23. Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115. https://doi.org/10.1042/BST20160474

    Article  CAS  PubMed  Google Scholar 

  24. Serhan CN, Arita M, Hong S, Gotlinger K (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39(11):1125–1132. https://doi.org/10.1007/s11745-004-1339-7

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Li Z, Fan M, Jin W (2022) Lipoxins in the nervous system: brighter prospects for neuroprotection. Front Pharmacol 26(13):781889. https://doi.org/10.3389/fphar.2022.781889

    Article  CAS  Google Scholar 

  26. Tulsky DS, Kisala PA, Victorson D, Tate DG, Heinemann AW, Charlifue S, Kirshblum SC, Fyffe D, Gershon R, Spungen AM, Bombardier CH, Dyson-Hudson TA, Amtmann D, Kalpakjian CZ, Choi SW, Jette AM, Forchheimer M, Cella D (2015) Overview of the spinal cord injury-quality of life (SCI-QOL) measurement system. J Spinal Cord Med 38(3):257–269. https://doi.org/10.1179/2045772315Y.0000000023

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. https://doi.org/10.1016/j.pneurobio.2013.11.002

    Article  PubMed  Google Scholar 

  28. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 22(10):282. https://doi.org/10.3389/fneur.2019.00282

    Article  Google Scholar 

  29. Coleman WP, Geisler FH (2004) Injury severity as primary predictor of outcome in acute spinal cord injury: retrospective results from a large multicenter clinical trial. Spine J 4(4):373–378. https://doi.org/10.1016/j.spinee.2003.12.006

    Article  PubMed  Google Scholar 

  30. Dietz V, Curt A (2006) Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol 5(8):688–694. https://doi.org/10.1016/S1474-4422(06)70522-1

    Article  PubMed  Google Scholar 

  31. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–299

    Google Scholar 

  32. Borgens RB, Liu-Snyder P (2012) Understanding secondary injury. Q Rev Biol 87(2):89–127. https://doi.org/10.1086/665457.PMID

    Article  PubMed  Google Scholar 

  33. Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine (Phila Pa 1976) 25(14):1859–1866. https://doi.org/10.1097/00007632-200007150-00022

    Article  CAS  Google Scholar 

  34. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553. https://doi.org/10.1007/s13311-018-0631-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nas K, Yazmalar L, Şah V, Aydın A, Öneş K (2015) Rehabilitation of spinal cord injuries. World J Orthop 6(1):8–16. https://doi.org/10.5312/wjo.v6.i1.8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dyall SC, Michael-Titus AT (2008) Neurological benefits of omega-3 fatty acids. Neuromolecular Med 10(4):219–235. https://doi.org/10.1007/s12017-008-8036-z

    Article  CAS  PubMed  Google Scholar 

  37. Giacobbe J, Benoiton B, Zunszain P, Pariante CM, Borsini A (2020) The anti-inflammatory role of Omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Front Psychiatry 28(11):122. https://doi.org/10.3389/fpsyt.2020.00122

    Article  Google Scholar 

  38. Tatsumi Y, Kato A, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K (2019) Omega-3 polyunsaturated fatty acids exert anti-oxidant effects through the nuclear factor (erythroid-derived 2)-related factor 2 pathway in immortalized mouse Schwann cells. J Diabetes Investig 10(3):602–612. https://doi.org/10.1111/jdi.12931

    Article  CAS  PubMed  Google Scholar 

  39. Norouzi Javidan A, Sabour H, Latifi S, Abrishamkar M, Soltani Z, Shidfar F, Emami RH (2014) Does consumption of polyunsaturated fatty acids influence on neurorehabilitation in traumatic spinal cord-injured individuals? Double-Blinded Clin Trial Spinal Cord 52(5):378–382. https://doi.org/10.1038/sc.2014.30

    Article  CAS  Google Scholar 

  40. Turner-Stokes L, Nyein K, Turner-Stokes T, Gatehouse C (1999) The UK FIM+FAM: development and evaluation. Funct Assess Measure Clin Rehabil 13(4):277–287. https://doi.org/10.1191/026921599676896799

    Article  CAS  Google Scholar 

  41. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 26(24 Suppl):S2-12. https://doi.org/10.1097/00007632-200112151-00002

    Article  CAS  Google Scholar 

  42. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 7–8:916–922. https://doi.org/10.1016/j.nut.2015.02.005

    Article  CAS  Google Scholar 

  43. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33(2):145–164. https://doi.org/10.2165/00007256-200333020-00005

    Article  PubMed  Google Scholar 

  44. Mickleborough TD (2013) Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 23(1):83–96. https://doi.org/10.1123/ijsnem.23.1.83

    Article  CAS  PubMed  Google Scholar 

  45. Terano T, Hirai A, Hamazaki T, Kobayashi S, Fujita T, Tamura Y, Kumagai A (1983) Effect of oral administration of highly purified eicosapentaenoic acid on platelet function, blood viscosity and red cell deformability in healthy human subjects. Atherosclerosis 46(3):321–331. https://doi.org/10.1016/0021-9150(83)90181-8

    Article  CAS  PubMed  Google Scholar 

  46. Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2):142–152. https://doi.org/10.1097/PHM.0b013e31802f0247

    Article  PubMed  Google Scholar 

  47. Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ (2017) Impact of exercise on cardiometabolic component risks in spinal cord-injured humans. Med Sci Sports Exerc 49(12):2469–2477. https://doi.org/10.1249/MSS.0000000000001390

    Article  PubMed  PubMed Central  Google Scholar 

  48. Javierre C, Vidal J, Segura R, Lizarraga MA, Medina J, Ventura JL (2006) The effect of supplementation with n-3 fatty acids on the physical performance in subjects with spinal cord injury. J Physiol Biochem 62(4):271–279. https://doi.org/10.1007/BF03165756

    Article  CAS  PubMed  Google Scholar 

  49. Jeffries MA, Tom VJ (2021) Peripheral immune dysfunction: a problem of central importance after spinal cord injury. Biology (Basel) 10(9):928. https://doi.org/10.3390/biology10090928

    Article  CAS  Google Scholar 

  50. Morse LR, Stolzmann K, Nguyen HP, Jain NB, Zayac C, Gagnon DR, Tun CG, Garshick E (2008) Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil 89(4):726–731. https://doi.org/10.1016/j.apmr.2007.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gibson AE, Buchholz AC, Martin Ginis KA, SHAPE-SCI Research Group (2008) C-reactive protein in adults with chronic spinal cord injury: increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord 9:616–621. https://doi.org/10.1038/sc.2008.32

    Article  Google Scholar 

  52. Myhrstad MC, Retterstøl K, Telle-Hansen VH, Ottestad I, Halvorsen B, Holven KB, Ulven SM (2011) Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors. Inflamm Res 60(4):309–319. https://doi.org/10.1007/s00011-010-0302-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allaire J, Couture P, Leclerc M, Charest A, Marin J, Lépine MC, Talbot D, Tchernof A, Lamarche B (2016) A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the comparing EPA to DHA (ComparED) Study. Am J Clin Nutr 104(2):280–287. https://doi.org/10.3945/ajcn.116.131896

    Article  CAS  PubMed  Google Scholar 

  54. Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI (2019) Biomarkers in spinal cord injury: prognostic insights and future potentials. Front Neurol 29(10):27. https://doi.org/10.3389/fneur.2019.00027

    Article  Google Scholar 

  55. Kwon BK, Streijger F, Fallah N, Noonan VK, Bélanger LM, Ritchie L, Paquette SJ, Ailon T, Boyd MC, Street J, Fisher CG, Dvorak MF (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34(3):567–580. https://doi.org/10.1089/neu.2016.4435

    Article  PubMed  Google Scholar 

  56. Sundrarjun T, Komindr S, Archararit N, Dahlan W, Puchaiwatananon O, Angthararak S, Udomsuppayakul U, Chuncharunee S (2004) Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res 32(5):443–454. https://doi.org/10.1177/147323000403200501

    Article  CAS  PubMed  Google Scholar 

  57. Nissinen L, Kähäri VM (2014) Matrix metalloproteinases in inflammation. Biochim Biophys Acta 1840(8):2571–2580. https://doi.org/10.1016/j.bbagen.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  58. de Castro RC Jr, Burns CL, McAdoo DJ, Romanic AM (2000) Metalloproteinase increases in the injured rat spinal cord. NeuroReport 11(16):3551–3554. https://doi.org/10.1097/00001756-200011090-00029

    Article  PubMed  Google Scholar 

  59. Moghaddam A, Heller R, Daniel V, Swing T, Akbar M, Gerner HJ, Biglari B (2017) Exploratory study to suggest the possibility of MMP-8 and MMP-9 serum levels as early markers for remission after traumatic spinal cord injury. Spinal Cord 55(1):8–15. https://doi.org/10.1038/sc.2016.104

    Article  CAS  PubMed  Google Scholar 

  60. Shinto L, Marracci G, Bumgarner L, Yadav V (2011) The effects of omega-3 Fatty acids on matrix metalloproteinase-9 production and cell migration in human immune cells: implications for multiple sclerosis. Autoimmune Dis 2011:134592. https://doi.org/10.4061/2011/134592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D, Okurowski S, Szewczyk P, Gorski A, Raisman G (2013) Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 22(9):1591–1612. https://doi.org/10.3727/096368912X663532

    Article  PubMed  Google Scholar 

  62. Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, Szewczyk P, Okurowski S, Miedzybrodzki R, Czapiga B, Salomon B, Halon A, Li Y, Lipiec J, Kulczyk A, Jarmundowicz W (2014) Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 23(12):1631–1655. https://doi.org/10.3727/096368914X685131

    Article  PubMed  Google Scholar 

  63. Yan CH, Rathor A, Krook K, Ma Y, Rotella MR, Dodd RL, Hwang PH, Nayak JV, Oyesiku NM, DelGaudio JM, Levy JM, Wise J, Wise SK, Patel ZM (2020) Effect of Omega-3 supplementation in patients with smell dysfunction following endoscopic sellar and parasellar tumor resection: a multicenter prospective randomized controlled trial. Neurosurgery 87(2):E91–E98. https://doi.org/10.1093/neuros/nyz559

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang AC, De Silva MEH, MacIsaac RJ, Roberts L, Kamel J, Craig JP, Busija L, Downie LE (2020) Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: a systematic review and meta-analysis. Nutr Rev 78(4):323–341. https://doi.org/10.1093/nutrit/nuz054

    Article  PubMed  Google Scholar 

  65. Hagen EM, Rekand T, Grønning M, Færestrand S (2012) Cardiovascular complications of spinal cord injury. Tidsskr Nor Laegeforen 132(9):1115–1120. https://doi.org/10.4045/tidsskr.11.0551

    Article  PubMed  Google Scholar 

  66. Wang YH, Huang TS, Liang HW, Su TC, Chen SY, Wang TD (2005) Fasting serum levels of adiponectin, ghrelin, and leptin in men with spinal cord injury. Arch Phys Med Rehabil 86(10):1964–1968. https://doi.org/10.1016/j.apmr.2005.04.017.Erratum.In:ArchPhysMedRehabil.2007May;88(5):688

    Article  PubMed  Google Scholar 

  67. Sabour H, Norouzi Javidan A, Latifi S, Shidfar F, Heshmat R, Emami Razavi SH, Vafa MR, Larijani B (2015) Omega-3 fatty acids’ effect on leptin and adiponectin concentrations in patients with spinal cord injury: a double-blinded randomized clinical trial. J Spinal Cord Med 38(5):599–606. https://doi.org/10.1179/2045772314Y.0000000251

    Article  PubMed  PubMed Central  Google Scholar 

  68. Latifi S, Koushki D, Norouzi Javidan A, Matin M, Sabour H (2013) Changes of leptin concentration in plasma in patients with spinal cord injury: a meta-analysis. Spinal Cord 51(10):728–731. https://doi.org/10.1038/sc.2013.82

    Article  CAS  PubMed  Google Scholar 

  69. Whiteneck GG, Charlifue SW, Frankel HL, Fraser MH, Gardner BP, Gerhart KA, Krishnan KR, Menter RR, Nuseibeh I, Short DJ et al (1992) Mortality, morbidity, and psychosocial outcomes of persons spinal cord injured more than 20 years ago. Paraplegia 30(9):617–630. https://doi.org/10.1038/sc.1992.124

    Article  CAS  PubMed  Google Scholar 

  70. Javierre C, Vidal J, Segura R, Medina J, Garrido E (2005) Continual supplementation with n-3 fatty acids does not modify plasma lipid profile in spinal cord injury patients. Spinal Cord 43(9):527–530. https://doi.org/10.1038/sj.sc.3101762

    Article  CAS  PubMed  Google Scholar 

  71. Yanai H, Masui Y, Katsuyama H, Adachi H, Kawaguchi A, Hakoshima M, Waragai Y, Harigae T, Sako A (2018) An improvement of cardiovascular risk factors by omega-3 polyunsaturated fatty acids. J Clin Med Res 10(4):281–289. https://doi.org/10.14740/jocmr3362w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int. 17(2):180–92. https://doi.org/10.1007/s00198-005-2028-8. Epub 2005 Oct 11. Erratum in: Osteoporos Int. 2006 17(8):1278–81

  73. Lerner UH (2006) Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. J Dent Res 85(7):596–607. https://doi.org/10.1177/154405910608500704

    Article  CAS  PubMed  Google Scholar 

  74. Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL (2021) The pathophysiology of osteoporosis after spinal cord injury. Int J Mol Sci 22(6):3057. https://doi.org/10.3390/ijms22063057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang TD, Wang YH, Huang TS, Su TC, Pan SL, Chen SY (2007) Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formos Med Assoc 106(11):919–928. https://doi.org/10.1016/S0929-6646(08)60062-5

    Article  CAS  PubMed  Google Scholar 

  76. Longo AB, Ward WE (2016) PUFAs, bone mineral density, and fragility fracture: findings from human studies. Adv Nutr 7(2):299–312. https://doi.org/10.3945/an.115.009472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sabour H, Larijani B, Vafa MR, Hadian MR, Heshmat R, Meybodi HA, Razavi HE, Javidan AN, Shidfar F (2012) The effects of n-3 fatty acids on inflammatory cytokines in osteoporotic spinal cord injured patients: a randomized clinical trial. J Res Med Sci 17(4):322–327

    PubMed  PubMed Central  Google Scholar 

  78. Sezer N, Akkuş S, Uğurlu FG (2015) Chronic complications of spinal cord injury. World J Orthop 6(1):24–33. https://doi.org/10.5312/wjo.v6.i1.24

    Article  PubMed  PubMed Central  Google Scholar 

  79. French DD, Campbell RR, Sabharwal S, Nelson AL, Palacios PA, Gavin-Dreschnack D (2007) Health care costs for patients with chronic spinal cord injury in the veterans health administration. J Spinal Cord Med 30(5):477–481. https://doi.org/10.1080/10790268.2007.11754581

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tator CH, Minassian K, Mushahwar VK (2012) Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 109:283–296. https://doi.org/10.1016/B978-0-444-52137-8.00018-8

    Article  PubMed  Google Scholar 

  81. Islamov R, Bashirov F, Fadeev F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kuznetsov M, Davleeva M, Garifulin R, Salafutdinov I, Nurullin L, Chelyshev Y, Lavrov I (2020) Epidural stimulation combined with triple gene therapy for spinal cord injury treatment. Int J Mol Sci 21(23):8896. https://doi.org/10.3390/ijms21238896

    Article  CAS  PubMed Central  Google Scholar 

  82. Mekki M, Delgado AD, Fry A, Putrino D, Huang V (2018) Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics 15(3):604–617. https://doi.org/10.1007/s13311-018-0642-3

    Article  PubMed  PubMed Central  Google Scholar 

  83. Papazafiropoulou AK, Kardara MS, Pappas SI (2012) Pleiotropic effects of omega-3 fatty acids. Recent Pat Endocr Metab Immune Drug Discov 6(1):40–46. https://doi.org/10.2174/187221412799015254

    Article  CAS  PubMed  Google Scholar 

  84. Bi J, Chen C, Sun P, Tan H, Feng F, Shen J (2019) Neuroprotective effect of omega-3 fatty acids on spinal cord injury induced rats. Brain Behav 9(8):e01339. https://doi.org/10.1002/brb3.1339

    Article  PubMed  PubMed Central  Google Scholar 

  85. Figueroa JD, Cordero K, Llán MS, De Leon M (2013) Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J Neurotrauma 30(10):853–868. https://doi.org/10.1089/neu.2012.2718

    Article  PubMed  PubMed Central  Google Scholar 

  86. Elagizi A, Lavie CJ, O’Keefe E, Marshall K, O’Keefe JH, Milani RV (2021) An Update on Omega-3 Polyunsaturated fatty acids and cardiovascular health. Nutrients 13(1):204. https://doi.org/10.3390/nu13010204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz A. Poniatowski.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and Consent to participate.

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turczyn, P., Wojdasiewicz, P., Poniatowski, Ł.A. et al. Omega-3 fatty acids in the treatment of spinal cord injury: untapped potential for therapeutic intervention?. Mol Biol Rep 49, 10797–10809 (2022). https://doi.org/10.1007/s11033-022-07762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07762-x

Keywords

Navigation