Skip to main content
Log in

The secretome obtained under hypoxic preconditioning from human adipose-derived stem cells exerts promoted anti-apoptotic potentials through upregulated autophagic process

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hypoxic preconditioning (HP) is a stem cell preconditioning modality designed to augment the therapeutic effects of mesenchymal stem cells (MSCs). Although autophagy is expected to play a role in HP, very little is known regarding the relationship between HP and autophagy.

Methods and results

The adipose-derived stem cell (ASC)-secretome obtained under normoxia (NCM) and ASC-secretome obtained under HP (HCM) were obtained by culturing ASCs for 24 h under normoxic (21% partial pressure of O2) and hypoxic (1% partial pressure of O2) conditions, respectively. Subsequently, to determine the in vivo effects of HCM, each secretome was injected into 70% partially hepatectomized mice, and liver specimens were obtained. HCM significantly reduced the apoptosis of thioacetamide-treated AML12 hepatocytes and promoted the autophagic processes of the cells (P < 0.05). Autophagy blockage by either bafilomycin A1 or ATG5 siRNA significantly abrogated the anti-apoptotic effect of HCM (P < 0.05), demonstrating that HCM exerts its anti-apoptotic effect by promoting autophagy. The effect of HCM — reduction of cell apoptosis and promotion of autophagic process — was also demonstrated in a mouse model.

Conclusions

HP appears to induce ASCs to release a secretome with enhanced anti-apoptotic effects by promoting the autophagic process of ASCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Hirashita T, Ohta M, Iwashita Y et al (2013) Risk factors of liver failure after right-sided hepatectomy. Am J Surg 206:374–379. https://doi.org/10.1016/j.amjsurg.2012.12.013

    Article  PubMed  Google Scholar 

  2. Rahbari NN, Garden OJ, Padbury R et al (2011) Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 149:713–724. https://doi.org/10.1016/j.surg.2010.10.001

    Article  PubMed  Google Scholar 

  3. Schreckenbach T, Liese J, Bechstein WO, Moench C (2012) Posthepatectomy liver failure. Dig Surg 29:79–85. https://doi.org/10.1159/000335741

    Article  PubMed  Google Scholar 

  4. Beer L, Mildner M, Ankersmit HJ (2017) Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 5:170. https://doi.org/10.21037/atm.2017.03.50

    Article  PubMed  PubMed Central  Google Scholar 

  5. Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260. https://doi.org/10.1186/s12967-014-0260-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359. https://doi.org/10.3389/fphys.2012.00359

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44:215–230

    CAS  PubMed  Google Scholar 

  8. Filip S, Mokry J, English D, Vojacek J (2005) Stem cell plasticity and issues of stem cell therapy. Folia Biol (Praha) 51:180–187

    CAS  Google Scholar 

  9. Lavoie JR, Rosu-Myles M (2013) Uncovering the secretes of mesenchymal stem cells. Biochimie 95:2212–2221. https://doi.org/10.1016/j.biochi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  10. Miura M, Miura Y, Padilla-Nash HM et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103. https://doi.org/10.1634/stemcells.2005-0403

    Article  PubMed  Google Scholar 

  11. Tolar J, Nauta AJ, Osborn MJ et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379. https://doi.org/10.1634/stemcells.2005-0620

    Article  CAS  PubMed  Google Scholar 

  12. Han JH, Kim OH, Lee SC et al (2019) A Novel Hepatic Anti-Fibrotic Strategy Utilizing the Secretome Released from Etanercept-Synthesizing Adipose-Derived Stem Cells. Int J Mol Sci 20. https://doi.org/10.3390/ijms20246302

  13. Kim KH, Lee JI, Kim OH et al (2019) Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells. World J Stem Cells 11:990–1004. https://doi.org/10.4252/wjsc.v11.i11.990

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SC, Kim KH, Kim OH et al (2017) Determination of optimized oxygen partial pressure to maximize the liver regenerative potential of the secretome obtained from adipose-derived stem cells.Stem Cell Research & Therapy8 https://doi.org/ARTN18110.1186/s13287-017-0635-x

  15. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiology-Cell Physiol 294:C675–C682. https://doi.org/10.1152/ajpcell.00437.2007

    Article  CAS  Google Scholar 

  16. Chen RH, Chen YH, Huang TY (2019) Ubiquitin-mediated regulation of autophagy.Journal of Biomedical Science26 https://doi.org/ARTN8010.1186/s12929-019-0569-y

  17. Hurley JH, Young LN (2017) Mechanisms of Autophagy Initiation. Annu Rev Biochem 86 86:225–244. https://doi.org/10.1146/annurev-biochem-061516-044820

    Article  CAS  PubMed  Google Scholar 

  18. Kim OH, Hong HE, Seo H et al (2020) Generation of induced secretome from adipose-derived stem cells specialized for disease-specific treatment: An experimental mouse model. World J Stem Cells 12:70–86. https://doi.org/10.4252/wjsc.v12.i1.70

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paik KY, Kim KH, Park JH et al (2020) A novel antifibrotic strategy utilizing conditioned media obtained from miR-150-transfected adipose-derived stem cells: validation of an animal model of liver fibrosis. Exp Mol Med 52:438–449. https://doi.org/10.1038/s12276-020-0393-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong HE, Kim OH, Kwak BJ et al (2019) Antioxidant action of hypoxic conditioned media from adipose-derived stem cells in the hepatic injury of expressing higher reactive oxygen species. Ann Surg Treat Res 97:159–167. https://doi.org/10.4174/astr.2019.97.4.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greene AK, Puder M (2003) Partial hepatectomy in the mouse: Technique and perioperative management. J Invest Surg 16:99–102. https://doi.org/10.1080/08941930390194424

    Article  PubMed  Google Scholar 

  22. Yuan N, Song L, Zhang SP et al (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100:345–356. https://doi.org/10.3324/haematol.2014.113324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232. https://doi.org/10.1056/NEJMoa051779

    Article  CAS  PubMed  Google Scholar 

  24. Rubio D, Garcia S, Paz MF et al (2008) Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 3:e1398. https://doi.org/10.1371/journal.pone.0001398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039. https://doi.org/10.1158/0008-5472.CAN-04-4194

    Article  CAS  PubMed  Google Scholar 

  26. Fouraschen SM, Pan Q, de Ruiter PE et al (2012) Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev 21:2410–2419. https://doi.org/10.1089/scd.2011.0560

    Article  CAS  PubMed  Google Scholar 

  27. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: Insights into the secretome. Biochim Et Biophys Acta-Proteins Proteom 1834:2380–2384. https://doi.org/10.1016/j.bbapap.2013.01.032

    Article  CAS  Google Scholar 

  28. Hendy R, Grasso P (1972) Autophagy in acute liver damage produced in the rat by dimethylnitrosamine. Chem Biol Interact 5:401–413

    Article  CAS  Google Scholar 

  29. Aguas AP, Soares JO, Nunes JF (1978) Autophagy in mouse hepatocytes induced by lysine acetylsalicylate. Experientia 34:1618–1619. https://doi.org/10.1007/BF02034711

    Article  CAS  PubMed  Google Scholar 

  30. Yu QC, Marzella L (1988) Response of autophagic protein degradation to physiologic and pathologic stimuli in rat hepatocyte monolayer cultures. Lab Invest 58:643–652

    CAS  PubMed  Google Scholar 

  31. Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D (2004) Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 286:G851–862. https://doi.org/10.1152/ajpgi.00175.2003

    Article  CAS  PubMed  Google Scholar 

  32. Chao X, Wang H, Jaeschke H, Ding WX (2018) Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 38:1363–1374. https://doi.org/10.1111/liv.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434. https://doi.org/10.1083/jcb.200412022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522. https://doi.org/10.1016/j.bone.2006.02.061

    Article  CAS  PubMed  Google Scholar 

  35. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953. https://doi.org/10.1016/j.bbrc.2007.05.054

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Zhuo Y, Duan D, Lu M (2020) Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 15:332–339. https://doi.org/10.2174/1574888X14666190823144928

    Article  CAS  PubMed  Google Scholar 

  37. Efimenko A, Starostina E, Kalinina N, Stolzing A (2011) Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 9:10. https://doi.org/10.1186/1479-5876-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Portron S, Merceron C, Gauthier O et al (2013) Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair. Plos One 8 https://doi.org/ARTNe6236810.1371/journal.pone.0062368

  39. Skiles ML, Sahai S, Rucker L, Blanchette JO (2013) Use of Culture Geometry to Control Hypoxia-Induced Vascular Endothelial Growth Factor Secretion from Adipose-Derived Stem Cells: Optimizing a Cell-Based Approach to Drive Vascular Growth. Tissue Eng Part A 19:2330–2338. https://doi.org/10.1089/ten.tea.2012.0750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Mol Cell Biol 29:2570–2581. https://doi.org/10.1128/Mcb.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pike LRG, Singleton DC, Buffa F et al (2013) Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem J 449:389–400. https://doi.org/10.1042/Bj20120972

    Article  CAS  PubMed  Google Scholar 

  42. Zhang HF, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903. https://doi.org/10.1074/jbc.M800102200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rzymski T, Milani M, Pike L et al (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–4435. https://doi.org/10.1038/onc.2010.191

    Article  CAS  PubMed  Google Scholar 

  44. Rouschop KMA, van den Beucken T, Dubois L et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. Journal of Clinical Investigation 120:127–141. https://doi.org/10.1172/Jci40027

Download references

Acknowledgements

We would like to thank Hye-Jung Kim for photoshop works that has made the manuscript understood intuitively. We also would like to thank Ji-Hye Park for her data processing and statistical works.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Kim SJ was responsible for planning the study, data interpretation, and writing manuscript. Seo H, Kim OH also wrote the manuscript and performed in vitro experiments. Choi HJ, Park JH analyzed the data. Hong HE also performed the various in vitro and in vivo experiments.

Corresponding author

Correspondence to Say-June Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Animal studies were accomplished according to the guidelines of the Institute for Laboratory Animal Research in Korea (CUMC-2020-0095-01).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H., Choi, H.J., Kim, OH. et al. The secretome obtained under hypoxic preconditioning from human adipose-derived stem cells exerts promoted anti-apoptotic potentials through upregulated autophagic process. Mol Biol Rep 49, 8859–8870 (2022). https://doi.org/10.1007/s11033-022-07736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07736-z

Keywords

Navigation