Skip to main content
Log in

Exploring genetic diversity and Population structure of five Aegilops species with inter-primer binding site (iPBS) markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Turkey is not only a center of origin for wheat, but also contains wild forms of various cereals. Turkey, located in the Fertile Crescent, has conserved its genetic richness to the present day. The aim of the study was to investigate the genetic diversity of 70 wild wheat species, to evaluate the structure of diversity in germplasm and to generate useful data for further breeding programs.

Methods and results

Genetic diversity and population structure of 70 wild wheat species (Ae. cylindrica, Ae. geniculata, Ae. triuncialis, T. dicocoides, Ae. columnaris) collected from Eastern and Southeastern Anatolia regions of Turkey were investigated in this study with the use of inter-primer binding site (iPBS) markers. Of 35 iPBS primers used, 11 yielded a total of 61 alleles. Number of alleles per marker varied between 2 (iPBS-2085) and 9 (iPBS-2394) with an average value of 5.55. Polymorphic information content (PIC) values varied between 0.22 and 0.47, with an average value of 0.35. Average number of effective alleles (Ne) was identified as 1.9488, Nei’s genetic diversity (H) as 0,4861 and Shannon’s information index (I) as 0.6791. Cluster analysis through unweighted pair-group mean average (UPGMA) method revealed that 70 wild wheats were divided into three main clusters. Genetic similarity between the genotypes, calculated with the use of NTSYS-pc software, varied between 19% (YB2 and YB70) and 98% (YB66 and YB67). Principal coordinate analysis (PCoA) revealed that three principal coordinates explained 62.33% of total variation. Moreover, population structure analysis showed that all genotypes formed three sub-populations. Expected heterozygosity values varied between 0.2666 (the first sub-population) and 0.2330 (third sub-population), with an average value of 0.2500. Average population differentiation measurement (Fst) was identified as 0.3716 for the first sub-population, 0.3930 for the second subpopulation and 0.4804 for the third sub-population.

Conclusions

Based on present findings population structure of 70 wild wheat genotypes collected from Eastern and Southeastern Anatolia regions of Turkey were successfully characterized with the use of iPBS markers. Present findings suggested that iPBS-retrotransposon markers could reliably be used to elucidate genetic diversity of Aegilops genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5(3):291–317. https://doi.org/10.1007/s12571-013-0263-y

    Article  Google Scholar 

  2. Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B (2021) Introducing beneficial alleles from plant genetic resources into the wheat germplasm Biology. 10:982. https://doi.org/10.3390/biology10100982. 10

  3. Hammer K, Gladis T (2014) Notes on infraspecific nomenclature and classifications of cultivated plants in Compositae, Cruciferae, Cucurbitaceae, Gramineae (with a remark on Triticum dicoccon Schrank) and Leguminosae. Genet Resour Crop Evol 61(8):1455–1467. https://doi.org/10.1007/s10722-014-0148-8

    Article  Google Scholar 

  4. Dorofeev V, Filatenko A, Migushova E, Udachin R, Jakubziner M (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, Leningrad. (in Russian)

    Google Scholar 

  5. Zeibig F, Kilian B, Frei M (2021) The grain quality of wheat wild relatives in the evolutionary context. Theor Appl Genet 1–20. https://doi.org/10.1007/s00122-021-04013-8

  6. Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52(5):750–764. https://doi.org/10.1093/pcp/pcr018

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Sharma A, Sharma R, Srivastva P, Choudhary A (2021) Exploration of wheat wild relative diversity from Lahaul valley: a cold arid desert of Indian Himalayas. Cereal Res Commun 1–16. https://doi.org/10.1007/s42976-021-00166-w

  8. Leśniowska-Nowak J, Okoń S, Wieremczuk A (2021) Molecular diversity analysis of genotypes from four Aegilops species based on retrotransposon–microsatellite amplified polymorphism (REMAP) markers. Cereal Res Commun 49(1):37–44. https://doi.org/10.1007/s42976-020-00086-1

    Article  CAS  Google Scholar 

  9. Iizumi T, Ali-Babiker I-EA, Tsubo M, Tahir IS, Kurosaki Y, Kim W, Gorafi YS, Idris AA, Tsujimoto H (2021) Rising temperatures and increasing demand challenge wheat supply in Sudan. Nat Food 2(1):19–27. https://doi.org/10.1038/s43016-020-00214-4

    Article  Google Scholar 

  10. Hegde S, Valkoun J, Waines J (2002) Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species—a preliminary survey. Crop Sci 42(2):608–614. https://doi.org/10.2135/cropsci2002.6080

    Article  CAS  Google Scholar 

  11. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. CRC Crit Rev Plant Sci 35(3):146–189. https://doi.org/10.1080/07352689.2016.1245056

    Article  CAS  Google Scholar 

  12. Kilian B, Dempewolf H, Guarino L, Werner P, Coyne C, Warburton ML (2021) Crop Science special issue: Adapting agriculture to climate change: A walk on the wild side. Crop Sci 61(1):32–36. https://doi.org/10.1002/csc2.20418

    Article  Google Scholar 

  13. Henry RJ, Nevo E (2014) Exploring natural selection to guide breeding for agriculture. Plant Biotechnol J 12(6):655–662. https://doi.org/10.1111/pbi.12215

    Article  PubMed  Google Scholar 

  14. Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q (2020) A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol 228(3):1027–1037. https://doi.org/10.1111/nph.16761

    Article  CAS  PubMed  Google Scholar 

  15. Dvorak J (1998) Genome analysis in the Triticum-Aegilops alliance. In: Proceedings of the 9th international wheat genetics symposium: Saskatoon: 8–11

  16. Mohammadi SA, Prasanna B (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop sci 43(4):1235–1248. https://doi.org/10.2135/cropsci2003.1235

    Article  Google Scholar 

  17. Pour-Aboughadareh A, Ahmadi J, Mehrabi A, Etminan A, Moghaddam M (2017) Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res Commun 45(4):574–586. https://doi.org/10.1556/0806.45.2017.033

    Article  Google Scholar 

  18. Mguis K, Mahjoub A, Abassi M, Albouchi A, Ouerghi Z, Nadia BB, Béjaoui Z (2015) Morphological and genetic variation in Aegilops geniculata Roth. from Tunisia. Int J Agric Res 6:8–21

    Google Scholar 

  19. Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41(4):1321–1329. https://doi.org/10.2135/cropsci2001.4141321x

    Article  Google Scholar 

  20. Goryunova S, Chikida N, Kochieva E (2017) AFLP, RAPD, and ISSR analysis of intraspecific polymorphism and interspecific differences of allotetraploid species Aegilops kotschyi Boiss. and Aegilops variabilis. Eig Russ J Genet 53(5):568–575. https://doi.org/10.1134/S1022795417050040

    Article  CAS  Google Scholar 

  21. Farouji AE, Khodayari H, Saeidi H, Rahiminejad MR (2015) Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia 70(1):52–60. https://doi.org/10.1515/biolog-2015-0002

    Article  CAS  Google Scholar 

  22. Taheri MT, Alavi-Kia SS, Mohammadi SA, Vahed MM (2018) Assessment of genetic diversity and relationships among Triticum urartu and Triticum boeoticum populations from Iran using IRAP and REMAP markers. Genet Resour Crop Evol 65(7):1867–1878. https://doi.org/10.1007/s10722-018-0660-3

    Article  CAS  Google Scholar 

  23. Ahmadi J, Fabriki OS, Pour AA (2019) Evaluation of genetic diversity in Aegilops populations possessing D genome using SCoT and TRAP markers. MGJ 14(3):2019–2228

    Google Scholar 

  24. Bouziani MC, Bechkri S, Bellil I, Khelifi D (2019) Evaluation of genetic diversity of Algerian Aegilops ventricosa Tausch. using inter-simple sequence repeat (ISSR) markers. World j Environ Biosci 8:1–6

    Google Scholar 

  25. Abbasov M, Brueggeman R, Raupp J, Akparov Z, Aminov N, Bedoshvili D, Gross T, Gross P, Babayeva S, Izzatullayeva V (2019) Genetic diversity of Aegilops L. species from Azerbaijan and Georgia using SSR markers. Genet Resour Crop Evol 66(2):453–463. https://doi.org/10.1007/s10722-018-0725-3

    Article  CAS  Google Scholar 

  26. Yamane K, Kawahara T (2018) Size homoplasy and mutational behavior of chloroplast simple sequence repeats (cpSSRs) inferred from intra-and interspecific variations in four chloroplast regions of diploid and polyploid Triticum and Aegilops species. Genet Resour Crop Evol 65(3):727–743. https://doi.org/10.1007/s10722-017-0567-4

    Article  CAS  Google Scholar 

  27. Gong W, Han R, Li H, Song J, Yan H, Li G, Liu A, Cao X, Guo J, Zhai S (2017) Agronomic traits and molecular marker identification of wheat–Aegilops caudata addition lines. Front Plant Sci 8:1743. https://doi.org/10.3389/fpls.2017.01743

    Article  PubMed  PubMed Central  Google Scholar 

  28. Urazaliev R, Yessimbekova M, Mukin K, Chirkin A, Ismagulova G (2018) Monitoring of Aegilops L local species genetic diversity of Kazakhstans flora Vavilovskii Zhurnal Genetikii Selektsii Vavilov. J Genet Plant Breed 22:484–490. https://doi.org/10.18699/VJ18.386

    Article  Google Scholar 

  29. Yasui Y, Nasuda S, Matsuoka Y, Kawahara T (2001) The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theor Appl Genet 102(4):463–470

    Article  CAS  Google Scholar 

  30. Pour-Aboughadareh A, Etminan A, Shooshtari L, Maleki-Tabrizi N (2020) Comparative assessment of SCoT and CBDP markers for investigation of genetic diversity existing in different aegilops species. World Res J Agric Biotechnol 11(4):153–174. https://doi.org/10.22103/JAB.2020.2528

    Article  Google Scholar 

  31. Abbasov M, Sansaloni CP, Burgueño J, Petroli CD, Akparov Z, Aminov N, Babayeva S, Izzatullayeva V, Hajiyev E, Rustamov K (2020) Genetic diversity analysis using DArTseq and SNP markers in populations of Aegilops species from Azerbaijan. Genet Resour Crop Evol 67(2):281–291. https://doi.org/10.1007/s10722-019-00866-7

    Article  CAS  Google Scholar 

  32. Su Y, Zou M, Zhu Y, Han X, Li Y, Zhang D, Li S (2020) Analysis of population structure and origin in Aegilops tauschii Coss. from China through SNP markers. Genet Resour Crop Evol 67(4):923–934. https://doi.org/10.1007/s10722-020-00890-y

    Article  CAS  Google Scholar 

  33. Hosseinpour A, Haliloglu K, Ozkan G, Tan M (2019) Genetic diversity and population structure of quinoa (Chenopodium quinoa Willd.) using iPBS-retrotransposons markers. Appl Ecol Environ Res 17(2):1899–1911. https://doi.org/10.15666/aeer/1702_18991911

    Article  Google Scholar 

  34. Hosseinpour A, Karahan F, İlhan E, İlçim A, Haliloğlu K (2019) Genetic structure and diversity of Adonis L. (Ranunculaceae) populations collected from Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk J Bot 43(5):585–596. https://doi.org/10.3906/bot-1810-1

    Article  CAS  Google Scholar 

  35. Kole C (2011) Wild crop relatives: genomics and breeding resources: plantation and ornamental crops. Springer

  36. Zeinalzadehtabrizi H, Hosseinpour A, Aydin M, Haliloglu K (2015) A modified genomic DNA extraction method from leaves of sunflower for PCR based analyzes. J Bio Env Sci 7(6):222–225

    Google Scholar 

  37. Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  38. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302. https://doi.org/10.2307/1932409

    Article  Google Scholar 

  39. Rohlf FJ (1972) An empirical comparison of three ordination techniques in numerical taxonomy. Syst Zool 21(3):271–280. https://doi.org/10.1093/sysbio/21.3.271

    Article  Google Scholar 

  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  41. Anderson JA, Churchill G, Autrique J, Tanksley S, Sorrells M (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186. https://doi.org/10.1139/g93-024

    Article  CAS  PubMed  Google Scholar 

  42. Yeh FC, Yang R, Boyle TB, Ye Z, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology center. Univ Alta Can 10:295–301

    Google Scholar 

  43. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67(1):170–181. https://doi.org/10.1086/302959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  45. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361. https://doi.10.1007/s12686-011-9548-7

  46. Nadeem MA (2021) Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers. Mol Biol Rep 48(10):6739–6748. https://doi.org/10.1007/s11033-021-06670-w

    Article  CAS  PubMed  Google Scholar 

  47. Öztürk H, Dursun A, Hosseinpour A, Haliloğlu K (2020) Genetic diversity of pinto and fresh bean (Phaseolus vulgaris L.) germplasm collected from Erzincan province of Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk J Agric For 44(4):417–427. https://doi.org/10.3906/tar-2002-9

    Article  CAS  Google Scholar 

  48. Karagoz H, Cakmakci R, Hosseinpour A, Ozkan G, Haliloglu K (2020) Analysis of genetic variation and population structure among of oregano (Origanum acutidens L.) accessions revealed by agro-morphological traits, oil constituents and retrotransposon-based inter-primer binding sites (iPBS) markers. Genet Resour Crop Evol 67(6):1367–1384. https://doi.org/10.1007/s10722-020-00887-7

    Article  CAS  Google Scholar 

  49. Ghobadi G, Etminan A, Mehrabi AM, Shooshtari L (2021) Molecular diversity analysis in hexaploid wheat (Triticum aestivum L.) and two Aegilops species (Aegilops crassa and Aegilops cylindrica) using CBDP and SCoT markers. J Genet Eng Biotechnol 19(1):1–11. https://doi.org/10.1186/s43141-021-00157-8

    Article  Google Scholar 

  50. Laity T, Laffan SW, González-Orozco CE, Faith DP, Rosauer DF, Byrne M, Miller JT, Crayn D, Costion C, Moritz CC (2015) Phylodiversity to inform conservation policy: An Australian example. Sci Total Environ 534:131–143. https://doi.org/10.1016/j.scitotenv.2015.04.113

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by Scientific Research Projects Department of Mardin Artuklu University (Grant Number: MAU.BAP.20.KMY.024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aras Türkoğlu.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval:

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate and publish

All authors reviewed and approved the final version for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizilgeci, F., Bayhan, B., Türkoğlu, A. et al. Exploring genetic diversity and Population structure of five Aegilops species with inter-primer binding site (iPBS) markers. Mol Biol Rep 49, 8567–8574 (2022). https://doi.org/10.1007/s11033-022-07689-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07689-3

Keywords

Navigation