Skip to main content
Log in

MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed W, Azmat R, Khojah E, Ahmed R, Qayyum A, Shah AN, Abbas A, Moin S, Samra BN (2022) The development of a green innovative bioactive film for industrial application as a new emerging technology to protect the quality of fruits. Molecules 27:486

    Article  CAS  Google Scholar 

  2. Shabala S, Chen G, Chen Z-H, Pottosin I (2020) The energy cost of the tonoplast futile sodium leak. New Phytol 225:1105–1110. https://doi.org/10.1111/nph.15758

    Article  PubMed  Google Scholar 

  3. Tanveer M, Yousaf U (2020) Plant single-cell biology and abiotic stress tolerance. In: Tripathi DK, Pratap Singh V, Chauhan DK, Sharma S, Prasad SM, Dubey NK, Ramawat N (eds) Plant life under changing environment. Academic Press, Cambridge, pp 611–626. https://doi.org/10.1016/B978-0-12-818204-8.00026-6

    Chapter  Google Scholar 

  4. Tanveer M (2019) Role of 24-epibrassinolide in inducing thermo-tolerance in plants. J Plant Growth Regul 38:945–955. https://doi.org/10.1007/s00344-018-9904-x

    Article  CAS  Google Scholar 

  5. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morf J, Wingett SW, Farabella I, Cairns J, Furlan-Magaril M, Jiménez-García LF, Liu X, Craig FF, Walker S, Segonds-Pichon A et al (2019) RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nat Biotechnol 37:793–802. https://doi.org/10.1038/s41587-019-0166-3

    Article  CAS  PubMed  Google Scholar 

  7. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338. https://doi.org/10.1126/science.1085242

    Article  CAS  PubMed  Google Scholar 

  8. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553. https://doi.org/10.1126/science.1191138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nithin C, Patwa N, Thomas A, Bahadur RP, Basak J (2015) Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures. BMC Plant Biol 15:140. https://doi.org/10.1186/s12870-015-0516-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hõrak H (2020) Telling footprints: exon junction complexes mark targets of nonsense- and miRNA-mediated mRNA decay. Plant Cell 32:787–788. https://doi.org/10.1105/tpc.20.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in C. elegans. Science 294:858–862

    Article  CAS  Google Scholar 

  12. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. https://doi.org/10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  13. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  14. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  Google Scholar 

  15. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442. https://doi.org/10.1105/tpc.110.082784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239. https://doi.org/10.1093/gbe/evs002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang S, Liu Y, Yu B (2015) New insights into pri-miRNA processing and accumulation in plants. Wiley Interdiscip Rev: RNA 6:533–545. https://doi.org/10.1002/wrna.1292

    Article  CAS  PubMed  Google Scholar 

  18. Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed Central  Google Scholar 

  19. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673. https://doi.org/10.1105/tpc.105.032185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799. https://doi.org/10.1016/j.molcel.2004.05.027

    Article  CAS  PubMed  Google Scholar 

  21. Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312. https://doi.org/10.1038/srep22312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu S-R, Zhou J-J, Hu C-G, Wei C-L, Zhang J-Z (2017) MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol 8:1801–1801. https://doi.org/10.3389/fmicb.2017.01801

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eckardt NA (2012) A microRNA cascade in plant defense. Plant Cell 24:840–840. https://doi.org/10.1105/tpc.112.240311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334

    Article  CAS  PubMed  Google Scholar 

  25. Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi-de-Sa MF (2019) MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17:1482–1500. https://doi.org/10.1111/pbi.13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bi H, Fei Q, Li R, Liu B, Xia R, Char SN, Meyers BC, Yang B (2020) Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnol J 18:1526–1536. https://doi.org/10.1111/pbi.13315

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Zhong Z, Chen H, Li Q, Zheng X, Qi Y, Zhang Y (2019) Knocking out microRNA genes in rice with CRISPR-Cas9. Methods Mol Boil (Clifton, N.J.) 1917:109–119. https://doi.org/10.1007/978-1-4939-8991-1_9

    Article  CAS  Google Scholar 

  28. Damodharan S, Corem S, Gupta SK, Arazi T (2018) Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J 96:855–868. https://doi.org/10.1111/tpj.14073

    Article  CAS  PubMed  Google Scholar 

  29. Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S (2020) CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci 7:1902312. https://doi.org/10.1002/advs.201902312

    Article  CAS  Google Scholar 

  30. Gualtieri C, Leonetti P, Macovei A (2020) Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Front Plant Sci 11:930–930. https://doi.org/10.3389/fpls.2020.00930

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mattioli C, Pianigiani G, Pagani F (2014) Cross talk between spliceosome and microprocessor defines the fate of pre-mRNA. Wiley Interdiscip Rev: RNA 5:647–658. https://doi.org/10.1002/wrna.1236

    Article  CAS  PubMed  Google Scholar 

  32. Schier AC, Taatjes DJ (2020) Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev 34:465–488. https://doi.org/10.1101/gad.335679.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stepien A, Knop K, Dolata J, Taube M, Bajczyk M, Barciszewska-Pacak M, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z (2017) Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip Rev: RNA 8:e1403. https://doi.org/10.1002/wrna.1403

    Article  CAS  Google Scholar 

  34. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20. https://doi.org/10.1038/s41580-018-0059-1

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  36. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190. https://doi.org/10.1074/jbc.M112.362053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O, Gu T, Kolaczkowski B, Xie M (2018) Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res 46:5737–5752. https://doi.org/10.1093/nar/gky306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M (2015) The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 43:4365–4380. https://doi.org/10.1093/nar/gkv328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun Q, Liu X, Yang J, Liu W, Du Q, Wang H, Fu C, Li W-X (2018) MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Mol Plant 11:806–814. https://doi.org/10.1016/j.molp.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  40. Dolata J, Taube M, Bajczyk M, Jarmolowski A, Szweykowska-Kulinska Z, Bielewicz D (2018) Regulation of plant microprocessor function in shaping microRNA landscape. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00753

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Mei J, Ren G (2019) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00360

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schauer SE, Golden TA, Merchant DS, Patra BN, Lang JD, Ray S, Chakravarti B, Chakravarti D, Ray A (2013) DCL1, a protein that produces plant microRNA, coordinates meristem activity. bioRxiv. https://doi.org/10.1101/001438

    Article  Google Scholar 

  43. Song J, Wang X, Song B, Gao L, Mo X, Yue L, Yang H, Lu J, Ren G, Mo B et al (2019) Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. Nature Plants 5:1260–1272. https://doi.org/10.1038/s41477-019-0562-1

    Article  CAS  PubMed  Google Scholar 

  44. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  Google Scholar 

  45. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci 102:3691–3696

    Article  CAS  Google Scholar 

  46. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933. https://doi.org/10.1073/pnas.0505461102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31:267–278. https://doi.org/10.1038/emboj.2011.395

    Article  CAS  PubMed  Google Scholar 

  48. Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39:282–291. https://doi.org/10.1016/j.molcel.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  49. Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC (2019) Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Sci Rep 9:11091. https://doi.org/10.1038/s41598-019-47415-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36. https://doi.org/10.1007/s11103-011-9817-6

    Article  CAS  PubMed  Google Scholar 

  51. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3’ UTR evolution. Nat Struct Mol Biol 15:354–363. https://doi.org/10.1038/nsmb.1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung JH, Seo PJ, Park CM (2009) MicroRNA biogenesis and function in higher plants. Plant Biotechnol Rep 3:111–126

    Article  Google Scholar 

  53. Floyd SK, Bowman JL (2004) Ancient microRNA target sequences in plants. Nature 428:485–486. https://doi.org/10.1038/428485a

    Article  CAS  PubMed  Google Scholar 

  54. Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37. https://doi.org/10.1016/j.gene.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Y, Mo B, Chen X (2012) Mechanisms that impact microRNA stability in plants. RNA Biol 9:1218–1223. https://doi.org/10.4161/rna.22034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C (2012) CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24:1626–1642. https://doi.org/10.1105/tpc.112.096834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang S, Liu Y, Yu B (2014) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10:e1004841–e1004841. https://doi.org/10.1371/journal.pgen.1004841

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B (2018) DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol 177:1142–1151. https://doi.org/10.1104/pp.18.00354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Niu D, Carbonell A, Wang A, Lee A, Tun V, Wang Z, Carrington JC, Chang CE, Jin H (2014) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5:5468. https://doi.org/10.1038/ncomms6468

    Article  PubMed  Google Scholar 

  60. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110. https://doi.org/10.1038/nrg2936

    Article  CAS  PubMed  Google Scholar 

  61. Hausser J, Zavolan M (2014) Identification and consequences of miRNA–target interactions—beyond repression of gene expression. Nat Rev Genet 15:599. https://doi.org/10.1038/nrg3765

    Article  CAS  PubMed  Google Scholar 

  62. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. https://doi.org/10.1016/j.cell.2013.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seok H, Ham J, Jang ES, Chi SW (2016) MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells 39:375–381. https://doi.org/10.14348/molcells.2016.0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA–target recognition. PLoS Biol 3:e85. https://doi.org/10.1371/journal.pbio.0030085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khorshid M, Hausser J, Zavolan M, van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10:253. https://doi.org/10.1038/nmeth.2341

    Article  CAS  PubMed  Google Scholar 

  66. Lee D, Shin C (2012) MicroRNA-target interactions: new insights from genome-wide approaches. Ann N Y Acad Sci 1271:118–128. https://doi.org/10.1111/j.1749-6632.2012.06745.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282. https://doi.org/10.1038/nrg3162

    Article  CAS  PubMed  Google Scholar 

  68. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139. https://doi.org/10.1038/nsmb.2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ren W, Wu F, Bai J, Li X, Yang X, Xue W, Liu H, He Y (2020) BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage (Brassica rapa ssp. pekinensis). Hortic Res 7:1. https://doi.org/10.1038/s41438-019-0222-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Juárez-González VT, López-Ruiz BA, Baldrich P, Luján-Soto E, Meyers BC, Dinkova TD (2019) The explant developmental stage profoundly impacts small RNA-mediated regulation at the dedifferentiation step of maize somatic embryogenesis. Sci Rep 9:14511. https://doi.org/10.1038/s41598-019-50962-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S (2016) Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 6:30786. https://doi.org/10.1038/srep30786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang M, Lu H, Xue F, Ma L (2019) Identifying high confidence microRNAs in the developing seeds of Jatropha curcas. Sci Rep 9:4510. https://doi.org/10.1038/s41598-019-41189-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao Y, Li D, Zhang L-L, Borthakur D, Li Q-S, Ye J-H, Zheng X-Q, Lu J-L (2019) MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant. Sci Rep 9:20239. https://doi.org/10.1038/s41598-019-56686-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen H, Zhang J, Neff MM, Hong S-W, Zhang H, Deng X-W, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500. https://doi.org/10.1073/pnas.0710778105

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jin X, Fu Z, Lv P, Peng Q, Ding D, Li W, Tang J (2015) Identification and characterization of microRNAs during maize grain filling. PLoS ONE 10:e0125800–e0125800. https://doi.org/10.1371/journal.pone.0125800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pirrò S, Matic I, Guidi A, Zanella L, Gismondi A, Cicconi R, Bernardini R, Colizzi V, Canini A, Mattei M et al (2019) Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus. Sci Rep 9:15145. https://doi.org/10.1038/s41598-019-51100-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Merelo P, Ram H, Pia Caggiano M, Ohno C, Ott F, Straub D, Graeff M, Cho SK, Yang SW, Wenkel S et al (2016) Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proc Natl Acad Sci USA 113:11973–11978. https://doi.org/10.1073/pnas.1516110113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y (2021) Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem 158:53–64. https://doi.org/10.1016/j.plaphy.2020.11.044

    Article  CAS  PubMed  Google Scholar 

  79. Luo M, Tai R, Yu C-W, Yang S, Chen C-Y, Lin W-D, Schmidt W, Wu K (2015) Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J 82:925–936. https://doi.org/10.1111/tpj.12868

    Article  CAS  PubMed  Google Scholar 

  80. Prakash P, Rajakani R, Gupta V (2016) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74. https://doi.org/10.1016/j.compbiolchem.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  81. Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L (2014) OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol 14:158–158. https://doi.org/10.1186/1471-2229-14-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao F, Wang N, Li H, Liu J, Fu C, Xiao Z, Wei C, Lu X, Feng J, Zhou Y (2016) Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing. Sci Rep 6:34601. https://doi.org/10.1038/srep34601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z (2017) Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol 17:211. https://doi.org/10.1186/s12870-017-1172-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niu C, Li H, Jiang L, Yan M, Li C, Geng D, Xie Y, Yan Y, Shen X, Chen P et al (2019) Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. Hortic Res 6:75. https://doi.org/10.1038/s41438-019-0157-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Riaz M, Arif MS, Ashraf MA, Mahmood R, Yasmeen T, Shakoor MB, Shahzad SM, Ali M, Saleem I, Arif M et al (2019) A comprehensive review on rice responses and tolerance to salt stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Sawston, pp 133–158. https://doi.org/10.1016/B978-0-12-814332-2.00007-1

    Chapter  Google Scholar 

  86. Mondal TK, Panda AK, Rawal HC, Sharma TR (2018) Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci Rep 8:570. https://doi.org/10.1038/s41598-017-18206-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE 15:e0230958. https://doi.org/10.1371/journal.pone.0230958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA (2019) Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing. Genes 10:303. https://doi.org/10.3390/genes10040303

    Article  CAS  PubMed Central  Google Scholar 

  89. Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res 24:10068–10082. https://doi.org/10.1007/s11356-017-8593-5

    Article  CAS  Google Scholar 

  90. Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313. https://doi.org/10.1002/jcp.25125

    Article  CAS  PubMed  Google Scholar 

  91. Tang Y, Liu H, Guo S, Wang B, Li Z, Chong K, Xu Y (2018) OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice. Plant Physiol 176:946–959. https://doi.org/10.1104/pp.17.00964

    Article  CAS  PubMed  Google Scholar 

  92. de Felippes FF (2019) Gene regulation mediated by microRNA-triggered secondary small RNAs in plants. Plants 8:112

    Article  Google Scholar 

  93. Zheng X, Yang L, Li Q, Ji L, Tang A, Zang L, Deng K, Zhou J, Zhang Y (2018) MIGS as a simple and efficient method for gene silencing in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00662

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cheng C, Liu F, Sun X, Tian N, Mensah RA, Li D, Lai Z (2019) Identification of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) responsive miRNAs in banana root. Sci Rep 9:13682. https://doi.org/10.1038/s41598-019-50130-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu H, Zhang Y, Tang R, Qu H, Duan X, Jiang Y (2019) Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genom 20:33–33. https://doi.org/10.1186/s12864-018-5395-1

    Article  Google Scholar 

  96. Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K (2019) Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 9:18191. https://doi.org/10.1038/s41598-019-54340-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang G, Ai Q, Yu D (2015) Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci Rep 5:11813. https://doi.org/10.1038/srep11813

    Article  PubMed  PubMed Central  Google Scholar 

  98. Choi C, Han J, Thao Tran NT, Yoon S, Kim G, Song S, Kim Y, Ryu S (2017) Effective experimental validation of miRNA targets using an improved linker reporter assay. Genet Res 99:e2. https://doi.org/10.1017/s001667231600015x

    Article  CAS  Google Scholar 

  99. Mittal N, Zavolan M (2014) Seq and CLIP through the miRNA world. Genome Biol 15:202. https://doi.org/10.1186/gb4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu Y, Leslie CS (2016) Learning to predict miRNA-mRNA interactions from AGO CLIP sequencing and CLASH data. PLoS Comput Biol 12:e1005026–e1005026. https://doi.org/10.1371/journal.pcbi.1005026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173. https://doi.org/10.1038/nsmb.1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Majoros WH, Lekprasert P, Mukherjee N, Skalsky RL, Corcoran DL, Cullen BR, Ohler U (2013) MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10:630. https://doi.org/10.1038/nmeth.2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Erhard F, Dölken L, Jaskiewicz L, Zimmer R (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol 14:R79. https://doi.org/10.1186/gb-2013-14-7-r79

    Article  PubMed  PubMed Central  Google Scholar 

  104. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  105. Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8. https://doi.org/10.1007/s11627-015-9663-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973. https://doi.org/10.1038/nbt1125

    Article  CAS  PubMed  Google Scholar 

  107. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465. https://doi.org/10.1038/nbt.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y et al (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01598

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas Daniel F, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9:1088–1091. https://doi.org/10.1016/j.molp.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li W-X, Mao L, Chen B, Xu Y et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890–23890. https://doi.org/10.1038/srep23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16. https://doi.org/10.1186/s12896-015-0131-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Uhde-Stone C, Sarkar N, Antes T, Otoc N, Kim Y, Jiang YJ, Lu B (2014) A TALEN-based strategy for efficient bi-allelic miRNA ablation in human cells. RNA 20:948–955. https://doi.org/10.1261/rna.042010.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hu R, Wallace J, Dahlem TJ, Grunwald DJ, O’Connell RM (2013) Targeting human microRNA genes using engineered tal-effector nucleases (TALENs). PLoS ONE 8:e63074. https://doi.org/10.1371/journal.pone.0063074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1. https://doi.org/10.1186/s13059-017-1381-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ming M, Ren Q, Pan C, He Y, Zhang Y, Liu S, Zhong Z, Wang J, Malzahn AA, Wu J et al (2020) CRISPR-Cas12b enables efficient plant genome engineering. Nat Plants 6:202–208. https://doi.org/10.1038/s41477-020-0614-6

    Article  CAS  PubMed  Google Scholar 

  117. Qin R, Li J, Liu X, Xu R, Yang J, Wei P (2020) SpCas9-NG self-targets the sgRNA sequence in plant genome editing. Nature Plants 6:197–201. https://doi.org/10.1038/s41477-020-0603-9

    Article  CAS  PubMed  Google Scholar 

  118. Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38:84–89. https://doi.org/10.1038/s41587-019-0337-2

    Article  CAS  PubMed  Google Scholar 

  119. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  120. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141. https://doi.org/10.1101/gr.162339.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Doman JL, Raguram A, Newby GA, Liu DR (2020) Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. https://doi.org/10.1038/s41587-020-0414-6,10.1038/s41587-020-0414-6

    Article  PubMed  PubMed Central  Google Scholar 

  122. D’Ario M, Griffiths-Jones S, Kim M (2017) Small RNAs: big impact on plant development. Trends Plant Sci 22:1056–1068. https://doi.org/10.1016/j.tplants.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  123. Baldrich P, Kakar K, Siré C, Moreno AB, Berger A, García-Chapa M, López-Moya JJ, Riechmann JL, San Segundo B (2014) Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. BMC Genom 15:1083. https://doi.org/10.1186/1471-2164-15-1083

    Article  CAS  Google Scholar 

  124. Šečić E, Kogel K-H, Ladera-Carmona MJ (2021) Biotic stress-associated microRNA families in plants. J Plant Physiol 263:153451. https://doi.org/10.1016/j.jplph.2021.153451

    Article  CAS  PubMed  Google Scholar 

  125. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak A, Vazquez F, Karlowski W, Jarmolowski A et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00410

    Article  PubMed  PubMed Central  Google Scholar 

  126. Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR (2019) Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep 9:16434. https://doi.org/10.1038/s41598-019-52858-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tripathi AM, Singh A, Singh R, Verma AK, Roy S (2019) Modulation of miRNA expression in natural populations of A. thaliana along a wide altitudinal gradient of Indian Himalayas. Sci Rep 9:441. https://doi.org/10.1038/s41598-018-37465-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bustamante A, Marques MC, Sanz-Carbonell A, Mulet JM, Gomez G (2018) Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Sci Rep 8:15538. https://doi.org/10.1038/s41598-018-34012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for their technical support RGP.2/169/42

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Noor Shah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1793 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Shah, A.N., Tanveer, M. et al. MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools. Mol Biol Rep 49, 5437–5450 (2022). https://doi.org/10.1007/s11033-022-07231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07231-5

Keywords

Navigation