Skip to main content

Advertisement

Log in

2q35-rs13387042 variant and the risk of breast cancer: a case–control study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Breast Cancer is the most frequent neoplasm diagnosed among women worldwide. Genetic background and lifestyle/environment play a significant role in the disease etiology. According to Genome-wide association studies, some single-nucleotide polymorphisms such as 2q35-rs13387042–(G/A) have been introduced to be associated with breast cancer risk and features. In this study, we aimed to evaluate the association between this variant and the risk of breast cancer in a cohort of Iranian women.

Methods

Demographics and clinical information were collected by interview and using patients’ medical records, respectively. DNA was extracted from 506 blood samples, including 184 patients and 322 controls, and genotyping was performed using allele specific-PCR. SPSS v16 was used for statistical analysis.

Result

Statistically significant association was observed between AA genotype and disease risk in all patients [padj = 0.048; ORadj = 2.13, 95% CI (1.01–4.50)] and also ER-positive breast cancers [padj = 0.015; ORadj = 2.12, 95% CI (1.16–3.88)]. There was no association between rs13387042 and histopathological characteristics of the disease. Furthermore, overall survival was not statistically associated with genotype and allelic models even after adjustment for stage and receptor status (p > 0.05).

Conclusion

There is a statistically significant association between 2q35-rs13387042 and breast cancer risk. rs13387042-AA genotype might be a risk-conferring factor for breast cancer development in the Iranian population. However, further consideration is suggested to confirm its role in risk assessment and probable association with other genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are not available due to the university rules and regulations, however, upon written request, subjected to approval by the university, some parts may be available.

Code availability

Not applicable.

References

  1. Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46

    Article  PubMed  Google Scholar 

  2. Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseingholi A, Barzegar F et al (2012) Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev 13(1):367–370

    Article  PubMed  Google Scholar 

  3. Aghababazadeh M, Dorraki N, Javan FA, Fattahi AS, Gharib M, Pasdar A (2017) Downregulation of Caspase 8 in a group of Iranian breast cancer patients—a pilot study. J Egypt Natl Cancer Inst 29(4):191–195

    Article  Google Scholar 

  4. Bagherabad MB, Afzaljavan F, Vahednia E, Rivandi M, Vakili F, Sadr SSH et al (2019) Association of caspase 8 promoter variants and haplotypes with the risk of breast cancer and its molecular profile in an Iranian population: a case-control study. J Cell Biochem 120(10):16435–16444

    Article  CAS  PubMed  Google Scholar 

  5. Vahednia E, Shandiz FH, Bagherabad MB, Moezzi A, Afzaljavan F, Tajbakhsh A et al (2019) The impact of CASP8 rs10931936 and rs1045485 polymorphisms as well as the haplotypes on breast cancer risk: a case-control study. Clin Breast Cancer 19(5):e563–e577

    Article  CAS  PubMed  Google Scholar 

  6. Azarkish F, Mirzaii Najmabadi K, Latifnejad Roudsari R, Homaei Shandiz F (2015) Factors related to return to work in women after breast cancer in Iran. Iran Red Crescent Med J 17(9):e19978

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM et al (2017) Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 118(9):2502–2515

    Article  CAS  PubMed  Google Scholar 

  8. Shamshiri AK, Afzaljavan F, Alidoust M, Taherian V, Vakili F, Moezzi A et al (2020) ESR1 gene variants, haplotypes and diplotypes may influence the risk of breast cancer and mammographic density. Mol Biol Rep 47(11):8367–8375

    Article  Google Scholar 

  9. Lerebours F, Lidereau R (2002) Molecular alterations in sporadic breast cancer. Crit Rev Oncol Hematol 44(2):121–141

    Article  CAS  PubMed  Google Scholar 

  10. Alidoust M, Shamshiri AK, Tajbakhsh A, Gheibihayat SM, Mazloom SM, Alizadeh F et al (2021) The significant role of a functional polymorphism in the NF-κB1 gene in breast cancer: evidence from an Iranian cohort. Future Oncol 17(35):4895–4905

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G et al (2020) Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 52:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu C, Zhou L, Yu J (2013) Quantitative assessment of 2q35-rs13387042 polymorphism and hormone receptor status with breast cancer risk. PLoS ONE 8(7):e66979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat Genet 39(7):865–869

    Article  CAS  PubMed  Google Scholar 

  14. Elematore I, Gonzalez-Hormazabal P, Reyes JM, Blanco R, Bravo T, Peralta O et al (2014) Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Mol Biol Rep 41(6):3715–3722

    Article  CAS  PubMed  Google Scholar 

  15. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang H, Li H, Yang X, Chen L, Zhu A, Sun M et al (2016) Associations of genetic variants at nongenic susceptibility loci with breast cancer risk and heterogeneity by tumor subtype in Southern Han Chinese women. BioMed Res Int. https://doi.org/10.1155/2016/3065493

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S et al (2016) An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet 25(17):3863–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng W, Cai Q, Signorello LB, Long J, Hargreaves MK, Deming SL et al (2009) Evaluation of 11 breast cancer susceptibility loci in African-American women. Cancer Epidemiol Biomark Prev. https://doi.org/10.1158/1055-9965.EPI-09-0624

    Article  Google Scholar 

  19. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41(5):579–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang H, Yang X, Chen L, Li H, Zhu A, Sun M et al (2015) Heterogeneity of breast cancer associations with common genetic variants in FGFR2 according to the intrinsic subtypes in Southern Han Chinese Women. Biomed Res Int. https://doi.org/10.1155/2015/626948

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fejerman L, Stern MC, John EM, Torres-Mejia G, Hines LM, Wolff RK et al (2015) Interaction between common breast cancer susceptibility variants, genetic ancestry, and nongenetic risk factors in Hispanic women. Cancer Epidemiol Biomark Prev 24(11):1731–1738

    Article  CAS  Google Scholar 

  22. Dai J, Hu Z, Jiang Y, Shen H, Dong J, Ma H et al (2012) Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women. Breast Cancer Research: BCR 14(1):R17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng N, Zhou H, Fan H, Yuan Y (2017) Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 8(66):110635

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tajbakhsh A, Afzal Javan F, Fazeli M, Rivandi M, Kushyar MM, Nassiri M et al (2017) TOX3 Gene polymorphisms and breast cancer; effects and implications of the variations. Tehran Univ Med J TUMS Publications 75(5):323–331

    Google Scholar 

  25. Fagny M, Platig J, Kuijjer ML, Lin X, Quackenbush J (2020) Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. Br J Cancer 122(4):569–577

    Article  CAS  PubMed  Google Scholar 

  26. Shan J, Mahfoudh W, Dsouza SP, Hassen E, Bouaouina N, Abdelhak S et al (2012) Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat 135(3):715–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang T, Hong J, Lin WL, Yang QQ, Ni KL, Wu QY et al (2013) Assessing interactions between common genetic variant on 2q35 and hormone receptor status with breast cancer risk: evidence based on 26 studies. PLoS ONE 8(8):e69056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103(16):1252–1263

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K et al (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434

    Article  CAS  PubMed  Google Scholar 

  30. Dai J, Hu Z, Jiang Y, Shen H, Dong J, Ma H et al (2012) Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women. Breast Cancer Res 14(1):1

    Article  Google Scholar 

  31. Zheng W, Wen W, Gao YT, Shyr Y, Zheng Y, Long J et al (2010) Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst 102(13):972–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CT et al (2011) Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study. Cancer Epidemiol Biomark Prev 20(9):1950–1959

    Article  CAS  Google Scholar 

  33. Heramb C, Ekstrom PO, Tharmaratnam K, Hovig E, Moller P, Maehle L (2015) Ten modifiers of BRCA1 penetrance validated in a Norwegian series. Hered Cancer Clin Pract 13(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR et al (2010) Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362(11):986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Slattery ML, Baumgartner KB, Giuliano AR, Byers T, Herrick JS, Wolff RK (2011) Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat 129(2):531–539

    Article  PubMed  PubMed Central  Google Scholar 

  36. Milne RL, Benítez J, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C et al (2009) Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 101(14):1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milne RL, Benítez J, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C et al (2009) Risk of estrogen receptor-positive and–negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 101(14):1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4(4):e1000054

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim H, Lee J-Y, Sung H, Choi J-Y, Park SK, Lee K-M et al (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res 14(2):1–12

    Article  CAS  Google Scholar 

  40. Fasching PA, Pharoah PDP, Cox A, Nevanlinna H, Bojesen SE, Karn T et al (2012) The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 21(17):3926–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hein A, Rack B, Li L, Ekici AB, Reis A, Lux MP et al (2017) Genetic breast cancer susceptibility variants and prognosis in the prospectively randomized SUCCESS a study. Geburtshilfe Frauenheilkd 77(6):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Biong M, Gram IT, Brill I, Johansen F, Solvang HK, Alnaes GI et al (2010) Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density. BMC Med Genom 3:9

    Article  Google Scholar 

  43. Woolcott CG, Courneya KS, Boyd NF, Yaffe MJ, McTiernan A, Brant R et al (2013) Longitudinal changes in IGF-I and IGFBP-3, and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev 22(11):2116–2120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all participants who took part in this study. We would also like to thank Mashhad University of Medical Sciences, Omid and Imam Reza hospitals who supported this project.

Funding

This work was based on the Master of Science thesis of Mr. Abolfazl Nesaei and partly was financially supported by Mashhad University of Medical Sciences under Grant 931028.

Author information

Authors and Affiliations

Authors

Contributions

Design of the research: AN, FA and AP. Data collection: AN, ZNG, FA, AT, MR, FHS and AKS. Laboratory work: AN, ZNG. Statistical analysis: FA and AKS. Manuscript drafting: ZNG, FA, AKS and AP. AP edited and approved the final version of this manuscript. All authors also participated in the finalization of the manuscript and approved the final draft. 

Corresponding author

Correspondence to Alireza Pasdar.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical approval

The study was approved by the Ethics Committee of Mashhad University of Medical Sciences (Ethic No: IR.MUMS.REC.1394.186).

Consent to participate

Written informed consent was obtained from all participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesaei, A., Naderi Ghale-noie, Z., Khorshid Shamshiri, A. et al. 2q35-rs13387042 variant and the risk of breast cancer: a case–control study. Mol Biol Rep 49, 3549–3557 (2022). https://doi.org/10.1007/s11033-022-07195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07195-6

Keywords

Navigation