Skip to main content
Log in

Trichostatin A inhibits dendritic cell maturation through down-regulating NF—κ B (p65) pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κB (p65) pathway.

Methods and results

Mouse bone marrow-derived DCs were cultured. Lipopolysaccharide (LPS) was applied as stimulation for maturation. Triptolide (TTL) was applied as p65 inhibitor. Microphotography and flow cytometry showed that TSA and p65 inhibitor separately inhibited the maturation of DCs stimulated by LPS from the aspects of cell morphology and cell phenotype. Mixed lymphocyte reaction test and ELISA showed that TSA and p65 inhibitor synergistically inhibited the proliferation of T lymphocytes stimulated by DCs, reduced the secretion of pro-inflammatory cytokine IL-12 and elevated the secretion of anti-inflammatory cytokine IL-10. Western blot and RT-qPCR showed that TSA down-regulated the expression of phosphorylated IκBα, phosphorylated-p65, Ikkβ and Ikkγ, suggesting TSA down-regulates NF-κB (p65) pathway.

Conclusions

TSA inhibits DC maturation through down-regulating NF-κB (p65) pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The experiment data used to support the findings of this study are included within the article.

References

  1. Schaefer F, Bruttin O, Zografos L, Guex-Crosier Y (2001) Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol 85(7):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levey SB, Katz HR, Abrams DA, Hirschbein MJ, Marsh MJ (1997) The role of cultures in the management of ulcerative keratitis. Cornea 16(4):383–386

    Article  CAS  PubMed  Google Scholar 

  3. Engel LS, Callegan MC, Hobden JA, Reidy JJ, Hill JM, O’callaghan RJ (1995) Effectiveness of specific antibiotic/steroid combinations for therapy of experimental Pseudomonas aeruginosa keratitis. Curr Eye Res 14(3):229–234

    Article  CAS  PubMed  Google Scholar 

  4. Hazlett LD (2004) Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res 23(1):1–30

    Article  CAS  PubMed  Google Scholar 

  5. Austin A, Lietman T, Rose-Nussbaumer J (2017) Update on the management of infectious keratitis. Ophthalmology 124(11):1678–1689

    Article  PubMed  Google Scholar 

  6. Lakhundi S, Siddiqui R, Khan NA (2017) Pathogenesis of microbial keratitis. Microb Pathog 104:97–109

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Zhong J, Peng L, Wang B, Li S, Huang H, Deng Y, Zhang H, Yang R, Wang C, Yuan J (2017) Tacrolimus downregulates inflammation by regulating pro/antiinflammatory responses in LPSinduced keratitis. Mol Med Rep 16(5):5855–5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alaiti S, Kang S, Fiedler VC, Ellis CN, Spurlin DV, Fader D, Ulyanov G, Gadgil SD, Tanase A, Lawrence I, Scotellaro P, Raye K, Bekersky I (1998) Tacrolimus (FK506) ointment for atopic dermatitis: a phase I study in adults and children. J Am Acad Dermatol 38(1):69–76

    Article  CAS  PubMed  Google Scholar 

  9. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces I Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40(9):1249–1255

    Article  CAS  Google Scholar 

  10. Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y (2020) Tolerogenic dendritic cells: the pearl of immunotherapy in organ transplantation. Front Immunol 11:552988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chong AS (2020) B cells as antigen-presenting cells in transplantation rejection and tolerance. Cell Immunol 349:104061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar V, Kumar A (2014) Immunological aspects of corneal transplant. Immunol Invest 43(8):888–901

    Article  CAS  PubMed  Google Scholar 

  13. Constantino J, Gomes C, Falcao A, Neves BM, Cruz MT (2017) Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res 65(4):798–810

    Article  CAS  PubMed  Google Scholar 

  14. Amouzegar A, Chauhan SK, Dana R (2016) Alloimmunity and tolerance in corneal transplantation. J Immunol 196(10):3983–3991

    Article  CAS  PubMed  Google Scholar 

  15. Di Zazzo A, Kheirkhah A, Abud TB, Goyal S, Dana R (2017) Management of high-risk corneal transplantation. Surv Ophthalmol 62(6):816–827

    Article  PubMed  Google Scholar 

  16. Castillo-Leon E, Dellepiane S, Fiorina P (2018) ATP and T-cell-mediated rejection. Curr Opin Organ Transplant 23(1):34–43

    Article  CAS  PubMed  Google Scholar 

  17. Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D (2017) Update on dendritic cell-induced immunological and clinical tolerance. Front Immunol 8:1514

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maldonado RA, Von Andrian UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241(1):206–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang K, Song JY, Lim DS (2017) Tolerogenic dendritic cell-based immunotherapy. Oncotarget 8(53):90630–90631

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boscardin SB, Dudziak D, Munz C, Rosa DS (2020) Editorial: harnessing the participation of dendritic cells in immunity and tolerance. Front Immunol 11:595841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frikeche J, Peric Z, Brissot E, Gregoire M, Gaugler B, Mohty M (2012) Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 40(10):783–791

    Article  CAS  PubMed  Google Scholar 

  23. Yu Y, Feng S, Wei S, Zhong Y, Yi G, Chen H, Liang L, Chen H, Lu X (2019) Extracellular ATP activates P2X7R-NF-kappaB (p65) pathway to promote the maturation of bone marrow-derived dendritic cells of mice. Cytokine 119:175–181

    Article  CAS  PubMed  Google Scholar 

  24. Bai L, Lu XH, Sun FY, Zhong YY, Yu J, Tang MF, Zhang J (2011) Blockade of toll-like receptor 2 expression and membrane translocation in rat corneal epithelial cells by glucocorticoid (TobraDex) after penetrating keratoplasty. Cornea 30(11):1253–1259

    Article  PubMed  Google Scholar 

  25. Wu W, Yu S, Feng S, Yang J, Lu X (2016) Effect of the TLR2/MyD88/NF-kappaB axis on corneal allograft rejection after penetrating keratoplasty. J Recept Signal Transduct Res 36(1):45–52

    Article  PubMed  Google Scholar 

  26. Yang J, Feng S, Yi G, Wu W, Yi R, Lu X, Xu W, Qiu H (2016) Inhibition of RelA expression via RNA interference induces immune tolerance in a rat keratoplasty model. Mol Immunol 73:88–97

    Article  CAS  PubMed  Google Scholar 

  27. Shen Z, Liao X, Shao Z, Feng M, Yuan J, Wang S, Gan S, Ha Y, He Z, Jie W (2019) Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability. BMC Cancer 19(1):262

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Q, Chen T, Chen G, Shu X, Sun A, Ma P, Lu L, Cao X (2007) Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaB pathways. Mol Immunol 44(10):2686–2696

    Article  CAS  PubMed  Google Scholar 

  29. Forrester JV, Xu H, Kuffova L, Dick AD, Mcmenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234(1):282–304

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, Di Nicola M, Dua HS (2006) Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol 142(5):736–744

    Article  PubMed  Google Scholar 

  32. Manzouri B, Ohbayashi M, Leonardi A, Fattah D, Larkin DF, Ono SJ (2010) Characterisation of the phenotype and function of monocyte-derived dendritic cells in allergic conjunctiva. Br J Ophthalmol 94(12):1662–1667

    Article  PubMed  Google Scholar 

  33. Marin E, Cuturi MC, Moreau A (2018) Tolerogenic dendritic cells in solid organ transplantation: where do we stand? Front Immunol 9:274

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ritprajak P, Kaewraemruaen C, Hirankarn N (2019) Current paradigms of tolerogenic dendritic cells and clinical implications for systemic lupus erythematosus. Cells 8(10):1291

    Article  CAS  PubMed Central  Google Scholar 

  35. Mejias-Luque R, Gerhard M (2017) Immune evasion strategies and persistence of helicobacter pylori. Curr Top Microbiol Immunol 400:53–71

    CAS  PubMed  Google Scholar 

  36. Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F (2020) Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 77(19):3693–3710

    Article  CAS  PubMed  Google Scholar 

  37. Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, Zafari V, Aghebati-Maleki L, Shanehbandi D (2020) Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 254:117580

    Article  CAS  PubMed  Google Scholar 

  38. Li T, Lee W, Hara H, Long C, Ezzelarab M, Ayares D, Huang H, Wang Y, Esmon CT, Cooper DKC, Iwase H (2017) An Investigation of extracellular histones in Pig-To-Baboon organ xenotransplantation. Transplantation 101(10):2330–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Beier UH, Akimova T, Dahiya S, Han R, Samanta A, Levine MH, Hancock WW (2018) Histone/protein deacetylase inhibitor therapy for enhancement of Foxp3+ T-regulatory cell function posttransplantation. Am J Transplant 18(7):1596–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo X, Jie Y, Ren D, Zeng H, Zhang Y, He Y, Pan Z (2012) Histone deacetylase inhibitors promote mice corneal allograft survival through alteration of CD4+ effector T cells and induction of Foxp3+ regulatory T cells. Cell Immunol 277(1–2):8–13

    Article  CAS  PubMed  Google Scholar 

  41. Cras A, Politis B, Balitrand N, Darsin-Bettinger D, Boelle PY, Cassinat B, Toubert ME, Chomienne C (2012) Bexarotene via CBP/p300 induces suppression of NF-kappaB-dependent cell growth and invasion in thyroid cancer. Clin Cancer Res 18(2):442–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all the coworkers who participated in this study.

Funding

This study is supported by the Basic and Applied Research Programs of Guangzhou Science and Technology Plan Project, China (No. 202102020929), also by the Guangdong Province Science and Technology Major Plan Project, China (No. 2014B020212019). The funders have no role in study design; collection, management, analysis, or interpretation of data; writing of the report; or the decision to submit the report for publication.

Author information

Authors and Affiliations

Authors

Contributions

YY and DX conceptualized and designed the study. BL, SC, NJ, and WC performed experiments. SW and XC analyzed data. YY drafted the initial manuscript. DX, JW, FC, and TL reviewed and revised the manuscript. All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Daoman Xiang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The authors declare that no in vivo animal experiments or human participants were included in this study. The cells in our experiments were obtained directly from the animals. Our study was approved by the Institutional Review Board- Ethics Committee of Guangzhou Women and Children’s Medical Center, Guangzhou Medical University. All procedures were conducted in accordance with the Guiding Principles in the Care and Use of Animals (China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Yu, Bing Liu and Siyan Chen share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, B., Chen, S. et al. Trichostatin A inhibits dendritic cell maturation through down-regulating NF—κ B (p65) pathway. Mol Biol Rep 49, 2619–2627 (2022). https://doi.org/10.1007/s11033-021-07065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07065-7

Keywords

Navigation