Skip to main content
Log in

The effect of progesterone administration on the expression of metastasis tumor antigens (MTA1 and MTA3) in placentas of normal and dexamethasone-treated rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Dexamethasone (DEX) induces intrauterine growth restriction (IUGR) in pregnant rats. IUGR can occur due to apoptosis of trophoblasts, which is believed to be inhibited by progesterone (P4). A group of genes called MTAs play a role in proliferation and apoptosis. MTA1 upregulates trophoblasts proliferation and differentiation, while MTA3 downregulates proliferation and induces apoptosis. Hence, we hypothesized that during IUGR, placental MTA1 decreases and MTA3 increases and this is reversed by P4 treatment.

Methods

Pregnant Sprague–Dawley rats were divided into 4 groups based on daily intraperitoneal injections: control (C, saline), DEX (DEX, 0.2 mg/kg/day), DEX and P4 (DEX + P4, DEX: 0.2 mg/kg/day, P4: 5 mg/kg/day) and P4-treated (P4, 5 mg/kg/day) groups. Injections were started on 15 dg until the day of dissection (19 or 21 dg). Gene and protein expressions of MTA1 and MTA3 were studied in the labyrinth (LZ) and basal (BZ) zones using real-time PCR and Western blotting, respectively.

Results

DEX treatment induced 18% reduction in fetal body weight (p < 0.001) and 30% reduction in placental weight (p < 0.01). Maternal P4 level was also significantly lower in DEX treated groups (p < 0.05). MTA1 expression was decreased in the LZ (gene, p < 0.001) and BZ (protein p < 0.01), while MTA3 protein expression was upregulated in the LZ with DEX treatment (p < 0.001). These changes were reversed with P4 treatment.

Conclusion

The findings of the present study indicate that DEX induces IUGR through changing the expression of placental MTA1 and MTA3 antigens and P4 improved pregnancy outcome by preventing the changes in MTAs expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bamfo JE, Odibo AO (2011) Diagnosis and management of fetal growth restriction. J Pregnancy 2011:640715

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eberle C, Fasig T, Bruseke F, Stichling S (2021) Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: A systematic scoping review. PloS One 16(1):e0245386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rondo PH, Ferreira RF, Nogueira F, Ribeiro MC, Lobert H, Artes R (2003) Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur J Clin Nutr 57(2):266–272

    Article  CAS  PubMed  Google Scholar 

  4. Moss TJ, Nitsos I, Harding R, Newnham JP (2003) Differential effects of maternal and fetal betamethasone injections in late-gestation fetal sheep. J Soc Gynecol Investig 10(8):474–479

    Article  CAS  PubMed  Google Scholar 

  5. Bevilacqua E, Brunelli R, Anceschi MM (2010) Review and meta-analysis: Benefits and risks of multiple courses of antenatal corticosteroids. J Matern Fetal Neonatal Med 23(4):244–260

    Article  CAS  PubMed  Google Scholar 

  6. Ahmadabad H, Kayvan Jafari S, Nezafat Firizi M, Abbaspour AR, Ghafoori Gharib F, Ghobadi Y, Gholizadeh S (2016) Pregnancy outcomes following the administration of high doses of dexamethasone in early pregnancy. Clin Exp Reprod Med 43(1):15–25

    Article  Google Scholar 

  7. Yahi D, Ojo NA, Mshelia GD (2017) Influence of dexamethasone on some reproductive hormones and uterine progesterone receptor localization in pregnant Yankasa sheep in Semiarid Zones of Nigeria. J Vet Med 2017:9514861

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newbern D, Freemark M (2011) Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 18(6):409–416

    Article  CAS  PubMed  Google Scholar 

  9. Halasz M, Szekeres-Bartho J (2013) The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol 97(1):43–50

    Article  CAS  PubMed  Google Scholar 

  10. Yovich JL, Conceicao JL, Stanger JD, Hinchliffe PM, Keane KN (2015) Mid-luteal serum progesterone concentrations govern implantation rates for cryopreserved embryo transfers conducted under hormone replacement. Reprod Biomed Online 31(2):180–191

    Article  CAS  PubMed  Google Scholar 

  11. Szekeres-Bartho J (2018) The role of progesterone in feto-maternal immunological cross talk. Med Princ Pract 27(4):301–307

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah NM, Imami N, Johnson MR (2018) Progesterone modulation of pregnancy-related immune responses. Front Immunol 9:1293

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rider V, Talbott A, Bhusri A, Krumsick Z, Foster S, Wormington J, Kimler BF (2016) WINGLESS (WNT) signaling is a progesterone target for rat uterine stromal cell proliferation. J Endocrinol 229(2):197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC, Kim JJ, Grootegoed JA, Burger CW, Fodde R, Blok LJ (2009) Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res 15(18):5784–5793

    Article  CAS  PubMed  Google Scholar 

  15. Kim M, Park HJ, Seol JW, Jang JY, Cho YS, Kim KR, Choi Y, Lydon JP, Demayo FJ, Shibuya M, Ferrara N, Sung HK, Nagy A, Alitalo K, Koh GY (2013) VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol Med 5(9):1415–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pang Y, Dong J, Thomas P (2015) Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-alpha. Am J Physiol Endocrinol Metab 308(10):E899-911

    Article  PubMed  Google Scholar 

  17. Wang Y, Abrahams VM, Luo G, Norwitz NG, Snegovskikh VV, Ng SW, Norwitz ER (2018) Progesterone inhibits apoptosis in fetal membranes by altering expression of both pro- and antiapoptotic proteins. Reprod Sci 25(8):1161–1167

    Article  PubMed  Google Scholar 

  18. Liu J, Matsuo H, Laoag-Fernandez JB, Xu Q, Maruo T (2007) The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells. Mol Hum Reprod 13(12):869–874

    Article  CAS  PubMed  Google Scholar 

  19. Morrissy S, Xu B, Aguilar D, Zhang J, Chen QM (2010) Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell 9(5):799–809

    Article  CAS  PubMed  Google Scholar 

  20. Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Bader MD, Jasem SA, Kilarkaje N (2016) Carbenoxolone exposure during late gestation in rats alters placental expressions of p53 and estrogen receptors. Eur J Pharmacol 791:675–685

    Article  CAS  PubMed  Google Scholar 

  22. Alqaryyan M, Kilarkaje N, Mouihate A, Al-Bader MD (2017) Dexamethasone-induced intrauterine growth restriction is associated with altered expressions of metastasis tumor antigens and cell cycle control proteins in rat placentas. Reprod Sci 24(8):1164–1175

    Article  CAS  PubMed  Google Scholar 

  23. Fonseca BM, Correia-da-Silva G, Teixeira NA (2012) The rat as an animal model for fetoplacental development: a reappraisal of the post-implantation period. Reprod Biol 12(2):97–118

    Article  PubMed  Google Scholar 

  24. Romero R, Nicolaides K, Conde-Agudelo A, Tabor A, O’Brien JM, Cetingoz E, Da Fonseca E, Creasy GW, Klein K, Rode L, Soma-Pillay P, Fusey S, Cam C, Alfirevic Z, Hassan SS (2012) Vaginal progesterone in women with an asymptomatic sonographic short cervix in the midtrimester decreases preterm delivery and neonatal morbidity: a systematic review and metaanalysis of individual patient data. Am J Obstet Gynecol 206(2):124e1-19

    Article  Google Scholar 

  25. Hassan SS, Romero R, Vidyadhari D, Fusey S, Baxter JK, Khandelwal M, Vijayaraghavan J, Trivedi Y, Soma-Pillay P, Sambarey P, Dayal A, Potapov V, O’Brien J, Astakhov V, Yuzko O, Kinzler W, Dattel B, Sehdev H, Mazheika L, Manchulenko D, Gervasi MT, Sullivan L, Conde-Agudelo A, Phillips JA, Creasy GW, Trial P (2011) Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol 38(1):18–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar A, Begum N, Prasad S, Aggarwal S, Sharma S (2014) Oral dydrogesterone treatment during early pregnancy to prevent recurrent pregnancy loss and its role in modulation of cytokine production: a double-blind, randomized, parallel, placebo-controlled trial. Fertil Steril 102(5):1357-1363 e3

    Article  CAS  PubMed  Google Scholar 

  27. Wadhwa L, Batra S, Tempe A (2013) Role of dydrogesterone in the treatment of idiopathic IUGR, International Journal of Reproduction, Contraception. Obstet Gynecol 2(2):157

    Google Scholar 

  28. Zarean E, Mostajeran F, Dayani Z (2018) Effect of dydrogesterone on the outcome of idiopathic intrauterine growth restriction: a double-blind clinical trial study. Adv Biomed Res 7:93

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar R, Wang RA, Bagheri-Yarmand R (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30(5 Suppl 16):30–37

    Article  CAS  PubMed  Google Scholar 

  30. Manavathi B, Singh K, Kumar R (2007) MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal 5:e010

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manavathi B, Kumar R (2007) Metastasis tumor antigens, an emerging family of multifaceted master coregulators. J Biol Chem 282(3):1529–1533

    Article  CAS  PubMed  Google Scholar 

  32. Bruning A, Makovitzky J, Gingelmaier A, Friese K, Mylonas I (2009) The metastasis-associated genes MTA1 and MTA3 are abundantly expressed in human placenta and chorionic carcinoma cells. Histochem Cell Biol 132(1):33–38

    Article  PubMed  Google Scholar 

  33. Zhang H, Singh RR, Talukder AH, Kumar R (2006) Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. Genes Dev 20(21):2943–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shoener JA, Baig R, Page KC (2006) Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Physiol 290(5):R1366–R1373

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto H, Eto T, Endo K, Itai G, Kamisako T, Suemizu H, Ito M (2010) Comparative study of doses of exogenous progesterone administration needed to delay parturition in Jcl:MCH(ICR) mice. Exp Anim 59(4):521–524

    Article  CAS  PubMed  Google Scholar 

  36. Furukawa S, Hayashi S, Usuda K, Abe M, Hagio S, Ogawa I (2011) Toxicological pathology in the rat placenta. J Toxicol Pathol 24(2):95–111

    Article  PubMed  PubMed Central  Google Scholar 

  37. Romero A, Villamayor F, Grau MT, Sacristan A, Ortiz JA (1992) Relationship between fetal weight and litter size in rats: application to reproductive toxicology studies. Reprod Toxicol 6(5):453–456

    Article  CAS  PubMed  Google Scholar 

  38. Freetly HC, Leymaster KA (2004) Relationship between litter birth weight and litter size in six breeds of sheep. J Anim Sci 82(2):612–618

    Article  CAS  PubMed  Google Scholar 

  39. Al-Bader MD, Kilarkaje N, El-Farra A, Al-Abdallah AA (2015) Expression and subcellular localization of metastasis-associated protein 1, its short form, and estrogen receptors in rat placenta. Reprod Sci 22(4):484–494

    Article  CAS  PubMed  Google Scholar 

  40. Al-Bader M, Kilarkaje N (2015) Effects of bleomycin, etoposide and cisplatin treatment on Leydig cell structure and transcription of steroidogenic enzymes in rat testis. Eur J Pharmacol 747:150–159

    Article  CAS  PubMed  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  42. Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL (2013) Adaptations in placental phenotype depend on route and timing of maternal dexamethasone administration in mice. Biol Reprod 89(4):80

    Article  PubMed  Google Scholar 

  43. Waddell BJ, Hisheh S, Dharmarajan AM, Burton PJ (2000) Apoptosis in rat placenta is zone-dependent and stimulated by glucocorticoids. Biol Reprod 63(6):1913–1917

    Article  CAS  PubMed  Google Scholar 

  44. Ain R, Canham LN, Soares MJ (2005) Dexamethasone-induced intrauterine growth restriction impacts the placental prolactin family, insulin-like growth factor-II and the Akt signaling pathway. J Endocrinol 185(2):253–263

    Article  CAS  PubMed  Google Scholar 

  45. Norwitz ER, Caughey AB (2011) Progesterone supplementation and the prevention of preterm birth. Rev Obstet Gynecol 4(2):60–72

    PubMed  PubMed Central  Google Scholar 

  46. Blackwell LF, Cooke DG, Brown S (2018) The use of estrone-3-glucuronide and pregnanediol-3-glucuronide excretion rates to navigate the continuum of ovarian activity. Front Public Health 6:153

    Article  PubMed  PubMed Central  Google Scholar 

  47. Agular BM, Vinggaard AM, Vind C (1992) Regulation by dexamethasone of the 3 beta-hydroxysteroid dehydrogenase activity in adult rat Leydig cells. J Steroid Biochem Mol Biol 43(6):565–571

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to acknowledge the Research Sector, Kuwait University (Grant No. MY01/17) for funding this project.

Funding

This study was funded by the Research Sector, Kuwait University (Grant No. MY01/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Al-Bader.

Ethics declarations

Conflict of interest

Author Prof. Maie D. Al-Bader declares that she has no conflict of interest. Author Dr. Mariam M. Alawadhi declares that she has no conflict of interest. Author Dr. Farah R M Al Shammari declares that she has no conflict of interest. Author Dr. Fatemah H R Mulla Ali declares that she has no conflict of interest. Author Dr. Rama Jamal Almatar declares that she has no conflict of interest. Author Dr. Ayat Hassan Al-Duwaikhi declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 12 kb)

Supplementary file2 (tif 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawadhi, M.M., Al Shammari, F., Ali, F.M. et al. The effect of progesterone administration on the expression of metastasis tumor antigens (MTA1 and MTA3) in placentas of normal and dexamethasone-treated rats. Mol Biol Rep 49, 1935–1943 (2022). https://doi.org/10.1007/s11033-021-07005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07005-5

Keywords

Navigation