Skip to main content
Log in

Exploring the genetic diversity and population structure of scarlet eggplant germplasm from Rwanda through iPBS-retrotransposon markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Scarlet eggplant (Solanum aethiopicum gr. gilo) is a part of African indigenous vegetables and acknowledged as a source of variations in the breeding of Brinjal. Since its genetic diversity is still largely unexplored, therefore genetic diversity and population structure of this plant were investigated in this study.

Methods and results

Scarlet eggplant germplasm made of fifty-two accessions originated from two districts of Rwanda was assessed by employing the iPBS-retrotransposon markers system. Twelve most polymorphic primers were employed for molecular characterization and they yielded 329 total bands whereupon 85.03% were polymorphic. The recorded mean polymorphism information content was 0.363 and other diversity indices such as; mean the effective number of alleles, mean Shannon’s information index and gene diversity with the following values; 1.298, 0.300 and 0.187 respectively. A superior level of diversity was noticed among accessions from Musanze district. The model-based structure, neighbor-joining, and principal coordinate analysis (PCoA) gathered scarlet germplasm in a divergence manner to their collection district. Analysis of molecular variance (AMOVA) displayed that the utmost variations (81%) in scarlet eggplant germplasm are resulting in differences within populations.

Conclusions

The extensive diversity of scarlet eggplant in Rwanda might be used to form the base and genetic resource of an exhaustive breeding program of this economically important African indigenous vegetable. For instance, accessions MZE53 and GKE11 might be proposed as parent candidates due to their high relative genetic distance (0.6781).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used for the current study are available from the corresponding author on reasonable request.

References

  1. Caguiat XGI, Hautea DM (2014) Genetic diversity analysis of eggplant (Solanum melongena L.) and related wild species in the Philippines using morphological and SSR markers. SABRAO J Breed Genet 46(2):183–201

    Google Scholar 

  2. Isshiki S, Iwata N, Khan MMR (2008) ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci Hortic 117:186–190. https://doi.org/10.1016/j.scienta.2008.04.003

    Article  CAS  Google Scholar 

  3. Kamga RT, Kouamé C, Atangana AR, Abdulai MS, Tenkouano A (2015) Characterization of African eggplant accessions for morphological and yield parameters in the bimodal rainfall agroecology of Cameroon. Acta Hortic 1102:109–120. https://doi.org/10.17660/ActaHortic.2015.1102.13

    Article  Google Scholar 

  4. Song B, Song Y, Fu Y, Kizito EB, Kamenya SN et al (2019) Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. GigaScience 8:1–16. https://doi.org/10.1093/gigascience/giz115

    Article  CAS  Google Scholar 

  5. Weller SC, Van Wyk E, Simon JE (2015) Sustainable production for more resilient food production systems: Case study of African indigenous vegetables in eastern Africa. Acta Hortic 1102:289–297. https://doi.org/10.17660/ActaHortic.2015.1102.35

    Article  Google Scholar 

  6. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161(4):1697–1711. https://doi.org/10.1093/genetics/161.4.1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knapp S, Aubriot X, Prohens J (2019) Eggplant (Solanum melongena L.): Taxonomy and relationships. In: Chapman MA (ed) The eggplant genome. Springer, Cham, pp 11–22

    Chapter  Google Scholar 

  8. Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): New understanding of species names in a complex group. PLoS ONE 8(2):1–12. https://doi.org/10.1371/journal.pone.0057039

    Article  CAS  Google Scholar 

  9. Haliński ŁP, Samuels J, Stepnowski P (2017) Multivariate analysis as a key tool in chemotaxonomy of brinjal eggplant, African eggplants and wild related species. Phytochemistry 144:87–97. https://doi.org/10.1016/j.phytochem.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Lester RN, Daunay MC (2003) Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. In: Knüpffer H, Ochsmann (eds) Proceedings of a symposium dedicated to the 100th birthday of Rudolf Mansfeld, ZADI, Bonn, pp 136–152

  11. Mibei EK, Owino WO, Ambuko J, Giovannoni JJ, Onyango AN (2018) Metabolomic analyses to evaluate the effect of drought stress on selected African eggplant accessions. J Sci Food Agric 98(1):205–216. https://doi.org/10.1002/jsfa.8458

    Article  CAS  PubMed  Google Scholar 

  12. Sseremba G (2019) Genetic diversity and breeding of Solanum aethiopicum shum group for drought tolerance. PhDThesis. University of Ghana, Accra

    Google Scholar 

  13. Gramazio P, Blanca J, Ziarsolo P, Herraiz FJ, Plazas M et al (2016) Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the brinjal eggplant (Solanum melongena) with interest for breeding. BMC Genom 17(1):300. https://doi.org/10.1186/s12864-016-2631-4

    Article  CAS  Google Scholar 

  14. Kansiime MK, Karanja DK, Alokit C, Ochieng J (2018) Derived demand for African indigenous vegetable seed: implications for farmer-seed entrepreneurship development. Int Food Agribus Manag Rev 21(6):723–739. https://doi.org/10.22434/ifamr2017.0095

    Article  Google Scholar 

  15. Shah MA, Khan AI, Awan FS, Sadaqat HA, Bahadur S et al (2014) Genetic diversity of some tomato cultivars and breeding lines commonly used in Pakistani breeding program. Turk J Agric Food Sci 3(3):126–132. https://doi.org/10.24925/turjaf.v3i3.126-132.249

    Article  Google Scholar 

  16. Adeniji OT, Kusolwa PM, Reuben SOWM (2012) Genetic diversity among accessions of Solanum aethiopicum L. groups based on morpho-agronomic traits. Plant Genet Resour 10(3):177–185. https://doi.org/10.1017/S1479262112000226

    Article  Google Scholar 

  17. Larochelle C, Alwang JR (2014) Impacts of improved bean varieties on food security in rwanda impacts of improved bean varieties on food security in Rwanda. Agricultural and Applied Economics Association (AAEA) Conferences. https://ageconsearch.umn.edu/record/170567?ln=en. Accessed 19 Apr 2021

  18. Prasad PVV, Hijmans R J, Pierzynski GM, Middendorf JB (2016) Climate Smart Agriculture and Sustainable Intensification: Assessment and Priority Setting for Rwanda. Feed the Future Sustainable Intensification Innovation Lab, Kansas State University, Manhattan

  19. Van Dijk N, Elings A (2014) Horticulture in Rwanda: Possibilities for Further Development. BoP Innovation Center–28, Wageningen University, Wageningen

  20. Schreinemachers P, Sequeros T, Lukumay PJ (2017) International research on vegetable improvement in East and Southern Africa: adoption, impact, and returns. Agric Econ 48:707–717. https://doi.org/10.1111/agec.12368

    Article  Google Scholar 

  21. Dijkxhoorn Y, Saavedra Gonzalez Y, Judge LO (2016) Horticulture and floriculture in Rwanda Identification of focus areas for sector development. LEI Wageningen UR, Wageningen

    Book  Google Scholar 

  22. Uwamahoro F, Yuen J, Berlin A, Bucagu C, Bylund H (2020) Ralstonia solanacearum causing potato bacterial wilt: host range and cultivars’ susceptibility in Rwanda. Plant Pathol 69(3):559–568. https://doi.org/10.1111/ppa.13140

    Article  Google Scholar 

  23. Kalendar R, Antonius K, Smýkal P, Schulman HA (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  24. Ali F, Yılmaz A, Nadeem MA, Habyarimana E, Subaşı I et al (2019) Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE 14(2):1–19. https://doi.org/10.1371/journal.pone.0211985

    Article  CAS  Google Scholar 

  25. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Çifti V et al (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252. https://doi.org/10.1016/j.bse.2015.06.017

    Article  CAS  Google Scholar 

  26. Barut M, Nadeem MA, Karaköy T, Baloch FS (2020) DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For 44:479–491. https://doi.org/10.3906/tar-2001-10

    Article  CAS  Google Scholar 

  27. Yaldız G, Camlica M, Nadeem MA, Nawaz MA, Baloch FS (2018) Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turk J Agric For 42:154–164. https://doi.org/10.3906/tar-1708-32

    Article  CAS  Google Scholar 

  28. Yıldız M, Koçak M, Baloch FS (2015) Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genet Mol Res 14:10588–10602. https://doi.org/10.4238/2015.September.8.20

    Article  CAS  PubMed  Google Scholar 

  29. Yıldız M, Koçak M, Nadeem MA, Cavagnaro P, Barboza K et al (2019) Genetic diversity analysis in the Turkish pepper germplasm using iPBS retrotransposon-based markers. Turk J Agric For 44:1–14. https://doi.org/10.3906/tar-1902-10

    Article  CAS  Google Scholar 

  30. Stedje B, Bukenya-Ziraba R (2003) RAPD variation in Solanum anguivi Lam. and S. aethiopicum L. (Solanaceae) in Uganda. Euphytica 131(3):293–297. https://doi.org/10.1023/A:1024079208879

    Article  CAS  Google Scholar 

  31. Sunseri F, Polignano GB, Alba V, Lotti C, Bisignano V et al (2010) Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 4(7):231–241. https://doi.org/10.5897/AJPS.9000128

    Article  CAS  Google Scholar 

  32. Tümbilen Y, Frary A, Daunay MC, Doğanlar S (2011) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Agric For 35:125–136. https://doi.org/10.3906/biy-0906-57

    Article  CAS  Google Scholar 

  33. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  34. Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre—University of Alberta, Edmonton

    Google Scholar 

  35. Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6(2):125–134. https://doi.org/10.1023/A:1009680614564

    Article  Google Scholar 

  36. Smouse RPP, Peakall R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: An update. Bioinformatics 28(19):2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  38. Borràs D, Plazas M, Andújar I, Gramazio P, Herraiz JF et al (2015) Molecular characterization of scarlet and gboma eggplants based on single nucleotide polymorphisms. Bull Univ Agric Sci Vet Med Cluj-Napoca Hortic 72(2):1–3. https://doi.org/10.15835/buasvmcn-hort:11408

    Article  Google Scholar 

  39. Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K et al (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119(6):1143–1153. https://doi.org/10.1007/s00122-009-1116-0

    Article  PubMed  Google Scholar 

  40. Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30(2):647–660. https://doi.org/10.1007/s11032-011-9650-2

    Article  CAS  Google Scholar 

  41. Liu J, Yang Y, Zhou X, Bao S, Zhuang Y (2018) Genetic diversity and population structure of worldwide eggplant (Solanum melongena L.) germplasm using SSR markers. Genet Resour Crop Evol 65:1663–1670. https://doi.org/10.1007/s10722-018-0643-4

    Article  CAS  Google Scholar 

  42. Ge H, Liu Y, Jiang M, Zhang J, Hana H et al (2013) Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci Hortic 162:71–75. https://doi.org/10.1016/j.scienta.2013.08.004

    Article  CAS  Google Scholar 

  43. Wang Q, Zhao F, Sun Q, Yang A (2010) Genetic Diversity of Eggplant Revealed by SSR Markers. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010), IEEE Xplore, Chengdu, p 229–232

  44. Vilanova S, Hurtado M, Cardona A, Plazas M, Herraiz FJ et al (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR Markers. Not Bot Horti Agrobo 42(1):59–65. https://doi.org/10.15835/nbha4219414

    Article  CAS  Google Scholar 

  45. Context Network (2016) Rwanda Early Generation Seed Study: Country Report. Africa Lead (US Agency for International Development). https://reliefweb.int/report/rwanda/rwanda-early-generation-seed-study-country-report. Accessed 19 April 2021

  46. Gapusi RJ, Isibo T, Nyirigira RA, Gashamura RF, Sirikari S et al (2013) The state of plant genetic resources for food and agriculture in Rwanda: Country Report. Rwanda Agriculture and Animal Resources Development Board (RAB). https://www.rema.gov.rw/abs/content/read_file/5e54b77915867. Accessed 19 April 2021

  47. Mujuju C (2018) Identifying Leading Seed Companies in Western and Central Africa. Access to Seeds Foundation. https://www.accesstoseeds.org/app/uploads/2018/03/Leading-Seed-Companies-in-Eastern-and-Southern-Africa_DEF.pdf. Accessed 19 April 2021

  48. Ntihinyurwa PD, de Vries WT, Chigbu UE, Dukwiyimpuhwe PA (2019) The positive impacts of farm land fragmentation in Rwanda. Land Use Policy 81:565–581. https://doi.org/10.1016/j.landusepol.2018.11.005

    Article  Google Scholar 

  49. Acquadro A, Barchi L, Gramazio P, Portis E, Vilanova S et al (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE 12(7):1–20. https://doi.org/10.1371/journal.pone.0180774

    Article  CAS  Google Scholar 

  50. Sülü G, Kacar YI, Polat İ, Kitapci A, Turgutoğlu E et al (2020) Identification of genetic diversity among mutant lemon and mandarin varieties using different molecular markers. Turk J Agric For 44:465–478

    Article  Google Scholar 

  51. Öztürk Hİ, Dursun A, Hosseinpour A, Haliloğlu K (2020) Genetic diversity of pinto and fresh bean (Phaseolus vulgaris L.) germplasm collected from Erzincan province of Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk J Agric For 44:417–427

    Article  Google Scholar 

  52. Ton A, Karaköy T, Anlarsal AE, Türkeri M (2021) Genetic diversity for agro-morphological characters and nutritional compositions of some local faba bean (Vicia faba L.) genotypes. Turk J Agric For 45:301–312

    Article  Google Scholar 

  53. Karık Ü, Nadeem MA, Habyarimana E, Ercişli S, Yildiz M et al (2019) Exploring the genetic diversity and population structure of turkish laurel germplasm by the iPBSRetrotransposon marker system. Agronomy 9(10):647. https://doi.org/10.3390/agronomy9100647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Gökhan BAKTEMUR for his valuable support during field studies carried out at Cukurova University.

Funding

Authors are grateful to Cukurova University—Scientific Research Projects Coordinating Office for financial support (Project No: FDK-2020-13106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem Shehzad Baloch.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimira, F., Boyaci, H.F., Çilesiz, Y. et al. Exploring the genetic diversity and population structure of scarlet eggplant germplasm from Rwanda through iPBS-retrotransposon markers. Mol Biol Rep 48, 6323–6333 (2021). https://doi.org/10.1007/s11033-021-06626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06626-0

Keywords

Navigation