Skip to main content
Log in

Studies on the role of alpha 7 nicotinic acetylcholine receptors in K562 cell proliferation and signaling

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The results we obtained from this study gave information about the determination of alpha 7 nicotinic acetylcholine receptor (α7-nACh) expression in human erythroleukemia cells, as well as whether it has a role in calcium release and cell proliferation in the presence of nicotinic agonist, antagonists. Determining the roles of α7 nicotinic receptors in erythroleukemia cells will also contribute to leukemia-related signal transduction studies. This study is primarily to determine the role of nicotinic agonists and antagonists in cell proliferation, α7 nicotinic acetylcholine receptor expression, and calcium release. The aim of this study, which is a continuation and an important part of our previous studies on the cholinergic system, has contributed to the literature on the human erythroleukemia cell signaling mechanism. Cell viability was evaluated by the trypan blue exclusion test and Bromodeoxyuridine/5-Bromo-2′-deoxyuridine (BrdU) labeling. Acetylcholine, nicotinic alpha 7 receptor antagonist methyllycaconitine citrate, and cholinergic antagonist atropine were used to determine the role of α7-nACh in K562 cell proliferation. In our experiments, the fluorescence spectrophotometer was used in Ca2+ measurements. The expression of nicotinic alpha 7 receptor was evaluated by western blot. The stimulating effect of acetylcholine in K562 cell proliferation was reversed by both the α7 nicotinic antagonist methyllycaconitine citrate and the cholinergic antagonist, atropine. Methyllycaconitine citrate inhibited K562 cell proliferation partially explained the roles of nicotinic receptors in signal transduction. While ACh caused an increase in intracellular Ca2+, methyllycaconitine citrate decreased intracellular Ca2+ level in K562 cell. The effects of nicotinic agonists and/or antagonists on erythroleukemic cells on proliferation, calcium level contributed to the interaction of nicotinic receptors with different signaling pathways. Proliferation mechanisms in erythroleukemic cells are under the control of the α7 nicotinic acetylcholine receptor via calcium influx and different signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Zoli M et al (2018) Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 16(4):338–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gotti C et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78(7):703–711

    Article  CAS  PubMed  Google Scholar 

  3. Russo P, Cardinale A, Shuller H (2012) A new “era” for the alpha7-nAChR. Curr Drug Targets 13(5):721–725

    Article  CAS  PubMed  Google Scholar 

  4. Russo P, Taly A (2012) alpha7-Nicotinic acetylcholine receptors: an old actor for new different roles. Curr Drug Targets 13(5):574–578

    Article  CAS  PubMed  Google Scholar 

  5. Chen J et al (2019) Acetylcholine receptors: key players in cancer development. Surg Oncol 31:46–53

    Article  PubMed  Google Scholar 

  6. Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song P et al (2003) Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63(1):214–221

    CAS  PubMed  Google Scholar 

  8. Yu H et al (2017) Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep 7:40802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Godin JR et al (2020) A silent agonist of alpha7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE. Brain Behav Immun 87:286–300

    Article  CAS  PubMed  Google Scholar 

  10. Albuquerque EX et al (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    Article  CAS  PubMed  Google Scholar 

  11. Tajada S, Villalobos C (2020) Calcium permeable channels in cancer hallmarks. Front Pharmacol 11:968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bychkov M et al (2019) Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of alpha7 nicotinic acetylcholine receptors. PLoS ONE 14(5):e0217339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grando SA (2014) Connections of nicotine to cancer. Nat Rev Cancer 14(6):419–429

    Article  CAS  PubMed  Google Scholar 

  14. Sun Z et al (2020) differential expression of nicotine acetylcholine receptors associates with human breast cancer and mediates antitumor activity of alphaO-Conotoxin GeXIVA. Mar Drugs 18(1):61

    Article  CAS  PubMed Central  Google Scholar 

  15. Cooke JP, Bitterman H (2004) Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med 36(1):33–40

    Article  CAS  PubMed  Google Scholar 

  16. Heeschen C et al (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7(7):833–839

    Article  CAS  PubMed  Google Scholar 

  17. Heeschen C et al (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110(4):527–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dasgupta P et al (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103(16):6332–6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen PH et al (2018) Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. Tumour Biol 40(9):1010428318799028

    Article  PubMed  CAS  Google Scholar 

  20. Bencherif M et al (2011) Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci 68(6):931–949

    Article  CAS  PubMed  Google Scholar 

  21. Kalkman HO, Feuerbach D (2016) Modulatory effects of alpha7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennett J (1845) Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb Med Surg J 64:413–423

    Google Scholar 

  23. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334

    Article  CAS  PubMed  Google Scholar 

  24. Dasgupta P, Chellappan SP (2006) Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5(20):2324–2328

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C et al (2016) Role of alpha7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget 7(37):59199–59208

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burr SA, Leung YL (2014) Curare (d-Tubocurarine). Encyclopedia of Toxicology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  27. Aydin B, Cabadak H, Goren MZ (2018) Investigation of the roles of non-neuronal acetylcholine in chronic myeloid leukemic cells and their erythroid or megakaryocytic differentiated lines. Anticancer Agents Med Chem 18(10):1440–1447

    Article  CAS  PubMed  Google Scholar 

  28. Aydın B, Tulunay A, Ekşioğlu-Demiralp E, Kan B, Cabadak H (2019) Effects of carbachol on apoptosis in human chronic myelogenous leukemic K562 cell line. Marmara Med J 32(1):38–43

    Article  Google Scholar 

  29. Cabadak H, Aydın B, Kan B (2015) K562 hücrelerinde muskarinik agonist, antagonist ve sinyal ileti yolağı inhibitörleri c-Fos ve siklin D1 ekspresyonlarını değiştirir. Marmara Med J 26(2):72–76

    Google Scholar 

  30. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  31. Lau JK et al (2013) Inhibition of cholinergic signaling causes apoptosis in human bronchioalveolar carcinoma. Cancer Res 73(4):1328–1339

    Article  CAS  PubMed  Google Scholar 

  32. Song P et al (2008) Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 68(12):4693–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hajiasgharzadeh K et al (2020) The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 6(3):e03611

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aydin B, Kan B, Cabadak H (2013) The role of intracellular pathways in the proliferation of human K562 cells mediated by muscarinic receptors. Leuk Res 37(9):1144–1149

    Article  CAS  PubMed  Google Scholar 

  35. Schuller HM (2009) Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer 9(3):195–205

    Article  CAS  PubMed  Google Scholar 

  36. Calleja-Macias IE, Kalantari M, Bernard HU (2009) Cholinergic signaling through nicotinic acetylcholine receptors stimulates the proliferation of cervical cancer cells: an explanation for the molecular role of tobacco smoking in cervical carcinogenesis? Int J Cancer 124(5):1090–1096

    Article  CAS  PubMed  Google Scholar 

  37. Cheng K et al (2008) Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol 295(3):G591–G597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y et al (2011) Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization. Hepatology 53(2):493–503

    Article  CAS  PubMed  Google Scholar 

  39. Heeschen C, Weis M, Cooke JP (2003) Nicotine promotes arteriogenesis. J Am Coll Cardiol 41(3):489–496

    Article  CAS  PubMed  Google Scholar 

  40. Lee CH, Wu CH, Ho YS (2011) From smoking to cancers: novel targets to neuronal nicotinic acetylcholine receptors. J Oncol 2011:693424

    PubMed  PubMed Central  Google Scholar 

  41. Mucchietto V et al (2018) alpha9- and alpha7-containing receptors mediate the pro-proliferative effects of nicotine in the A549 adenocarcinoma cell line. Br J Pharmacol 175(11):1957–1972

    Article  CAS  PubMed  Google Scholar 

  42. Arredondo J et al (2002) Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol 159(2):325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saeed RW et al (2005) Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 201(7):1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahaut-Smith MP et al (2000) ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131(1):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schedel A et al (2011) Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler Thromb Vasc Biol 31(4):928–934

    Article  CAS  PubMed  Google Scholar 

  46. Anfossi G, Trovati M (1996) Role of catecholamines in platelet function: pathophysiological and clinical significance. Eur J Clin Invest 26(5):353–370

    Article  CAS  PubMed  Google Scholar 

  47. Graham GJ et al (2004) Tachykinins regulate the function of platelets. Blood 104(4):1058–1065

    Article  CAS  PubMed  Google Scholar 

  48. Morrell CN et al (2008) Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 205(3):575–584

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schedel A et al (2008) The dopamine agonism on ADP-stimulated platelets is mediated through D2-like but not D1-like dopamine receptors. Naunyn Schmiedebergs Arch Pharmacol 378(4):431–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from Marmara University Research Project Coordination Unit under Grant Number (SAG-C-YLP120418-0158) to Hülya Cabadak.

Author information

Authors and Affiliations

Authors

Contributions

Performed the experiments: GÖN, BA. Analyzed the results and conducted the project: GÖN, BA, and HC.

Corresponding author

Correspondence to Hülya Cabadak.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Önder Narin, G., Aydın, B. & Cabadak, H. Studies on the role of alpha 7 nicotinic acetylcholine receptors in K562 cell proliferation and signaling. Mol Biol Rep 48, 5045–5055 (2021). https://doi.org/10.1007/s11033-021-06498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06498-4

Keywords

Navigation