Skip to main content

Advertisement

Log in

Circulating miRNA 27a and miRNA150-5p; a noninvasive approach to endometrial carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The search for novel non-invasive biomarkers such as epigenetic molecular markers is new hope for common and burdensome cancers. We aim to assess serum expression of miRNA 27a and miRNA150-5p in endometrial cancer patients. Serum was drawn for 36 un-intervened endometrial cancer patients scheduled for hysterectomy and 35 controls. miRNA 27a and miRNA150-5p were measured by real time reverse transcription polymerase chain reaction. Significant overexpression of both miRNA in patients (p < 0.001). At cutoffs 0.2872 & > 1.02, miRNA 27a showed 100% sensitivity, specificity, positive and negative predictive values. miRNA150-5p showed 88.89% sensitivity, 100% specificity, 100% positive and 78.9% negative predictive values. Areas under curve were 1.0 for miRNA 27a, 0.982 for miRNA 150 performing much better than Ca125. miRNA 27a was significantly associated with type I endometroid endometrial cancer. Conclusion: miRNA 27a and miRNA-150-5P can be suggested as promising biomarkers of endometrial cancer possibly part of a miRNA panel for management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Available upon request.

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Smith RA, Andrews KS, Brooks D et al (2018) Cancer screening in the United States, 2018: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin 68:297–316. https://doi.org/10.3322/caac.21446

    Article  PubMed  Google Scholar 

  3. Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu H, Fan GC (2011) Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1:138–149

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66. https://doi.org/10.1101/sqb.2006.71.050

    Article  CAS  PubMed  Google Scholar 

  6. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838. https://doi.org/10.1126/science.1062961

    Article  CAS  PubMed  Google Scholar 

  7. Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci U S A 103:2208–2213. https://doi.org/10.1073/pnas.0510839103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249. https://doi.org/10.1016/j.tig.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  10. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17(10):1712. https://doi.org/10.3390/ijms17101712

    Article  CAS  PubMed Central  Google Scholar 

  11. Pan Q, Chegini N (2008) MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 26:479–493. https://doi.org/10.1055/s-0028-1096128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, Giudice LC (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15:625–631. https://doi.org/10.1093/molehr/gap068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan E, Prado DE, Weidhaas JB (2011) Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends Mol Med 17:235–243. https://doi.org/10.1016/j.molmed.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boren T, Xiong Y, Hakam A et al (2008) MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 110:206–215. https://doi.org/10.1016/j.ygyno.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  15. Chung TK, Cheung TH, Huen NY et al (2009) Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer 124:1358–1365. https://doi.org/10.1002/ijc.24071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung TK, Lau TS, Cheung TH et al (2012) Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 130:1036–1045. https://doi.org/10.1002/ijc.26060

    Article  CAS  PubMed  Google Scholar 

  17. Wu W, Lin Z, Zhuang Z, Liang X (2009) Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 18:50–55. https://doi.org/10.1097/CEJ.0b013e328305a07a

    Article  CAS  PubMed  Google Scholar 

  18. Chhabra R, Dubey R, Saini N (2010) Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer 9:232. https://doi.org/10.1186/1476-4598-9-232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 10:148. https://doi.org/10.1186/1471-2474-10-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buck AH, Perot J, Chisholm MA et al (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16:307–315. https://doi.org/10.1261/rna.1819210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim SY, Kim AY, Lee HW et al (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392:323–328. https://doi.org/10.1016/j.bbrc.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  22. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 583:759–766. https://doi.org/10.1016/j.febslet.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Li M, Han Y, Hong L, Gong T, Sun L, Zheng X (2010) Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci 55:2545–2551. https://doi.org/10.1007/s10620-009-1051-6

    Article  CAS  PubMed  Google Scholar 

  24. Pan W, Wang H, Jianwei R, Ye Z (2014) MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells. Cell Physiol Biochem 33:402–412. https://doi.org/10.1159/000356679

    Article  CAS  PubMed  Google Scholar 

  25. Ba S, Xuan Y, Long ZW, Chen HY, Zheng SS (2017) MicroRNA-27a promotes the proliferation and invasiveness of colon cancer cells by targeting SFRP1 through the Wnt/beta-catenin signaling pathway. Cell Physiol Biochem 42:1920–1933. https://doi.org/10.1159/000479610

    Article  CAS  PubMed  Google Scholar 

  26. Tang W, Zhu J, Su S, Wu W, Liu Q, Su F, Yu F (2012) MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS ONE 7:e51702. https://doi.org/10.1371/journal.pone.0051702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quan J, Liu S, Dai K, Jin L, He T, Pan X, Lai Y (2018) MicroRNA-23a/24-2/27a as a potential diagnostic biomarker for cancer: a systematic review and meta-analysis. Mol Clin Oncol 8:159–169. https://doi.org/10.3892/mco.2017.1492

    Article  CAS  PubMed  Google Scholar 

  28. de Candia P, Torri A, Pagani M, Abrignani S (2014) Serum microRNAs as biomarkers of human lymphocyte activation in health and disease. Front Immunol 5:43. https://doi.org/10.3389/fimmu.2014.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Huang H, Li Z et al (2012) Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 22:524–535. https://doi.org/10.1016/j.ccr.2012.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang S, Chen Y, Wu W et al (2013) miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS ONE 8:e80707. https://doi.org/10.1371/journal.pone.0080707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R (2012) Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 27:1759–1764. https://doi.org/10.3892/or.2012.1709

    Article  PubMed  Google Scholar 

  32. Yokobori T, Suzuki S, Tanaka N et al (2013) MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 104:48–54. https://doi.org/10.1111/cas.12030

    Article  CAS  PubMed  Google Scholar 

  33. Wu Q, Jin H, Yang Z et al (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345. https://doi.org/10.1016/j.bbrc.2009.12.182

    Article  CAS  PubMed  Google Scholar 

  34. Jia W, Wu Y, Zhang Q, Gao G, Zhang C, Xiang Y (2013) Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol Lett 6:261–267. https://doi.org/10.3892/ol.2013.1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mozos A, Catasus L, D’Angelo E et al (2014) The FOXO1-miR27 tandem regulates myometrial invasion in endometrioid endometrial adenocarcinoma. Hum Pathol 45:942–951. https://doi.org/10.1016/j.humpath.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Chen YJ, Xu K, Xu H, Shen XZ, Tu RQ (2014) Circulating microRNAs as a fingerprint for endometrial endometrioid adenocarcinoma. PLoS ONE 9:e110767. https://doi.org/10.1371/journal.pone.0110767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Wang HK, Li Y et al (2014) microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci U S A 111:4262–4267. https://doi.org/10.1073/pnas.1401430111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z (2012) Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 314:155–165. https://doi.org/10.1016/j.canlet.2011.09.027

    Article  CAS  PubMed  Google Scholar 

  39. Xu Y, Zhou M, Wang J et al (2014) Role of microRNA-27a in down-regulation of angiogenic factor AGGF1 under hypoxia associated with high-grade bladder urothelial carcinoma. Biochim Biophys Acta 1842:712–725. https://doi.org/10.1016/j.bbadis.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  40. Liu T, Tang H, Lang Y, Liu M, Li X (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273:233–242. https://doi.org/10.1016/j.canlet.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011. https://doi.org/10.1158/0008-5472.can-07-2416

    Article  CAS  PubMed  Google Scholar 

  42. Xu L, Xiang J, Shen J et al (2013) Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer Agents Med Chem 13:1126–1132. https://doi.org/10.2174/18715206113139990006

    Article  CAS  PubMed  Google Scholar 

  43. Zhu L, Shu Z, Sun X (2018) Bioinformatic analysis of four miRNAs relevant to metastasis-regulated processes in endometrial carcinoma. Cancer Manag Res 10:2337–2346. https://doi.org/10.2147/cmar.s168594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JW, Choi CH, Choi JJ et al (2008) Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542. https://doi.org/10.1158/1078-0432.ccr-07-1231

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Hu L, Tian C, Lu F, Wu J, Liu L (2015) microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4. BMC Mol Biol 16:24. https://doi.org/10.1186/s12867-015-0052-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang F, Ren X, Zhang X (2015) Role of microRNA-150 in solid tumors. Oncol Lett 10:11–16. https://doi.org/10.3892/ol.2015.3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Z, Wang J, Li J, Wang X, Song W (2018) MicroRNA-150 promotes cell proliferation, migration, and invasion of cervical cancer through targeting PDCD4. Biomed Pharmacother 97:511–517. https://doi.org/10.1016/j.biopha.2017.09.143

    Article  CAS  PubMed  Google Scholar 

  48. Lei Y, Hu X, Li B et al (2014) miR-150 modulates cisplatin chemosensitivity and invasiveness of muscle-invasive bladder cancer cells via targeting PDCD4 in vitro. Med Sci Monit 20:1850–1857. https://doi.org/10.12659/msm.891340

    Article  PubMed  PubMed Central  Google Scholar 

  49. Allgayer H (2010) Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol 73:185–191. https://doi.org/10.1016/j.critrevonc.2009.09.001

    Article  PubMed  Google Scholar 

  50. Felix AS, Weissfeld JL, Stone RA, Bowser R, Chivukula M, Edwards RP, Linkov F (2010) Factors associated with type I and Type II endometrial cancer. Cancer Causes Control 21:1851–1856. https://doi.org/10.1007/s10552-010-9612-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Esteller M, Xercavins J, Reventos J (1999) Advances in the molecular genetics of endometrial cancer (Review). Oncol Rep 6:1377–1382. https://doi.org/10.3892/or.6.6.1377

    Article  CAS  PubMed  Google Scholar 

  52. Hanby AM, Walker C, Tavassoli FA, Devilee P (2004) Pathology and genetics: tumours of the breast and female genital organs. WHO classification of tumours series - volume IV. Lyon, France: IARC Press. Breast Cancer Res 6(133):217–232. https://doi.org/10.1186/bcr788

    Article  Google Scholar 

  53. Mattie MD, Benz CC, Bowers J et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24. https://doi.org/10.1186/1476-4598-5-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xingwang LI, Min Xu, Ding Li, Tang J (2019) MiR-27a: a novel biomarker and potential therapeutic target in tumors. J Cancer 10(12):2836–2848

    Article  Google Scholar 

  55. Barisciano G, Colangelo T, Rosato V, Muccillo L, Taddei ML, Ippolito L, Chiarugi P, Galgani M, Bruzzaniti S, Matarese G, Fassan M, Agostini M, Bergamo F, Pucciarelli S, Carbone A, Mazzoccoli G, Colantuoni V, Bianchi F, Sabatino L (2020) miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer 122:1354–1366. https://doi.org/10.1038/s41416-020-0773-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Utsunomiya H, Ito K, Suzuki T et al (2004) Steroid sulfatase and estrogen sulfotransferase in human endometrial carcinoma. Clin Cancer Res 10:5850–5856. https://doi.org/10.1158/1078-0432.ccr-04-0040

    Article  CAS  PubMed  Google Scholar 

  57. Nothnick WB, Healy C, Hong X (2010) Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrine 37:265–273. https://doi.org/10.1007/s12020-009-9293-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu X, Liu T, Wang Y, Fu J, Yang Q, Wu J, Zhou H (2019) miRNA-mRNA associated with survival in endometrial cancer. Front Genet 10:743. https://doi.org/10.3389/fgene.2019.00743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao W, Hong Z, Huang H, Zhu A, Lin S, Cheng C, Shi Z (2018) miR-27a in serum acts as biomarker for prostate cancer detection and promotes cell proliferation by targeting Sprouty2. Oncol Lett 16:5291–5298. https://doi.org/10.3892/ol.2018.9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, Song YS, Dhanasekaran DN (2017) Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer 8(5–6):566–576. https://doi.org/10.18632/genesandcancer.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Donkers H, Bekkers R, Galaal K (2020) Diagnostic value of microRNA panel in endometrial cancer: a systematic review. Oncotarget 11(21):2010–2023. https://doi.org/10.18632/oncotarget.27601PMCID:PMC7260115 (PMID: 32523655)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Salem PS, Ghazala RS, El Gendi AM, Emara DM, Ahmed NM (2020) The association between circulating microRNA-150 level and cholangiocarcinoma. J Clin Lab Anal 34:e23397. https://doi.org/10.1002/jcla.23397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None. The authors declare that the work has not been funded by any source.

Funding

This work was self-funded by the authors and the authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Eman Ahmed El-Attar.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest nor financial interests.

Ethical approval

The Research Ethics Committee of the Faculty of Medicine, University of Alexandria IRB No 0012098, FWA No 00018699 approved this study and was conducted in accordance with the provisions of the Declaration of Helsinki and Good Clinical Practice guidelines.

Consent to participate

All study participants signed informed consents.

Consent for publication

All authors approve publication of this version of the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazala, R.A., El-Attar, E.A. & Abouzeid, Z.S. Circulating miRNA 27a and miRNA150-5p; a noninvasive approach to endometrial carcinoma. Mol Biol Rep 48, 4351–4360 (2021). https://doi.org/10.1007/s11033-021-06450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06450-6

Keywords

Navigation