Skip to main content
Log in

Overexpression of miRNA-9 enhances galectin-3 levels in oral cavity cancers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oral cavity cancer (OCC) is the predominant subtype of head and neck cancer (HNC) and has up to 50% mortality. Genome-wide microRNA (miR) sequencing data indicates overexpression of miR-9-5p in HNC tumours, however, the biological role of miR-9-5p in OCC is complex; it can either act as a tumour suppressor or an oncomir, regulating many target genes at the post-transcriptional level. We have investigated the overexpression of miR-9-5p in three OCC cell lines. We have evaluated its expression levels and Galectin-3 as potential biomarkers in saliva samples collected from controls and OCC patients. We found that over expression of miR-9-5p in OCC cell lines resulted in a significant reduction in cell proliferation and migration, and an increase in apoptosis, which was paralleled by an increase in Galectin-3 secretion and export of Galectin-3 protein. Our data are consistent with miR-9-5p being a modulator of Galectin-3 via the AKT/γ-catenin pathway. In addition, the positive correlation between the levels of miR-9-5p expression and secreted Galectin-3 in saliva reflects a similar relationship in vivo, and supports the utility of their integrative evaluation in OCC. Our findings indicate that both miR-9-5p and Galectin-3 are critical biomolecules in the progression of OCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Google Scholar 

  2. Chen SW, Zhang Q, Guo ZM, Chen WK, Liu WW, Chen YF et al (2018) Trends in clinical features and survival of oral cavity cancer: fifty years of experience with 3,362 consecutive cases from a single institution. Cancer Manag Res 10:4523–4535

    PubMed  PubMed Central  Google Scholar 

  3. Jadhav KB, Gupta N (2013) Clinicopathological prognostic implicators of oral squamous cell carcinoma: need to understand and revise. N Am J Med Sci 5(12):671–679

    PubMed  PubMed Central  Google Scholar 

  4. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML (2013) Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol 31(36):4550–4559. https://doi.org/10.1200/JCO.2013.50.3870

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Monsjou HS, Wreesmann VB, van den Brekel MW, Balm AJ (2013) Head and neck squamous cell carcinoma in young patients. Oral Oncol 49(12):1097–1102

    PubMed  Google Scholar 

  6. Bozinovic K, Sabol I, Dediol E, Milutin Gasperov N, Manojlovic S, Vojtechova Z et al (2019) Genome-wide miRNA profiling reinforces the importance of miR-9 in human papillomavirus associated oral and oropharyngeal head and neck cancer. Sci Rep 9(1):2306

    PubMed  PubMed Central  Google Scholar 

  7. Salazar C, Calvopina D, Punyadeera C (2014) miRNAs in human papilloma virus associated oral and oropharyngeal squamous cell carcinomas. Expert Rev Mol Diagn 14(8):1033–1040

    CAS  PubMed  Google Scholar 

  8. Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang XJ et al (2012) Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 48(1):73–78

    CAS  PubMed  Google Scholar 

  9. Nowek K, Wiemer EAC, Jongen-Lavrencic M (2018) The versatile nature of miR-9/9(*) in human cancer. Oncotarget 9(29):20838–20854

    PubMed  PubMed Central  Google Scholar 

  10. Wan Y, Vagenas D, Salazar C, Kenny L, Perry C, Calvopina D et al (2017) Salivary miRNA panel to detect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget 8(59):99990–100001

    PubMed  PubMed Central  Google Scholar 

  11. Tokmak S, Arık D, Pınarbaşlı Ö, Gürbüz MK, Açıkalın MF (2019) Evaluation and prognostic significance of galectin-3 expression in oral squamous cell carcinoma. Ear Nose Throat J. https://doi.org/10.1177/0145561319893861

    Article  PubMed  Google Scholar 

  12. Nangia-Makker P, Raz T, Tait L, Hogan V, Fridman R, Raz A (2007) Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res 67(24):11760–11768

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9(2):305–328

    CAS  PubMed  Google Scholar 

  14. Viguier M, Advedissian T, Delacour D, Poirier F, Deshayes F (2014) Galectins in epithelial functions. Tissue Barriers 2:e29103

    PubMed  PubMed Central  Google Scholar 

  15. Cardoso AC, Andrade LN, Bustos SO, Chammas R (2016) Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol 6:127

    PubMed  PubMed Central  Google Scholar 

  16. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ (2010) Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta 1800(2):181–189

    CAS  PubMed  Google Scholar 

  17. Wang LP, Chen SW, Zhuang SM, Li H, Song M (2013) Galectin-3 accelerates the progression of oral tongue squamous cell carcinoma via a Wnt/beta-catenin-dependent pathway. Pathol Oncol Res 19(3):461–474

    PubMed  Google Scholar 

  18. Coppock JD, Mills AM, Stelow EB (2020) Galectin-3 expression in high-risk hpv-positive and negative head & neck squamous cell carcinomas and regional lymph node metastases. Head Neck Pathol. https://doi.org/10.1007/s12105-020-01195-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saussez S, Decaestecker C, Mahillon V, Cludts S, Capouillez A, Chevalier D et al (2008) Galectin-3 upregulation during tumor progression in head and neck cancer. Laryngoscope 118(9):1583–1590

    CAS  PubMed  Google Scholar 

  20. Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J et al (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6(12):4635–4640

    CAS  PubMed  Google Scholar 

  21. Yu T, Liu K, Wu Y, Fan J, Chen J, Li C et al (2014) MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/beta-catenin signaling pathway. Oncogene 33(42):5017–5027

    CAS  PubMed  Google Scholar 

  22. Shang A, Lu WY, Yang M, Zhou C, Zhang H, Cai ZX et al (2018) miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells Nanomed Biotechnol 46(8):1754–1762

    CAS  PubMed  Google Scholar 

  23. Hersi HM, Raulf N, Gaken J, Folarin N, Tavassoli M (2018) MicroRNA-9 inhibits growth and invasion of head and neck cancer cells and is a predictive biomarker of response to plerixafor, an inhibitor of its target CXCR4. Mol Oncol 12(12):2023–2041

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lakshminarayana S, Augustine D, Rao RS, Patil S, Awan KH, Venkatesiah SS et al (2018) Molecular pathways of oral cancer that predict prognosis and survival: a systematic review. J Carcinog 17:7

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krishna Prasad RB, Sharma A, Babu HM (2013) An insight into salivary markers in oral cancer. Dent Res J (Isfahan) 10(3):287–295

    Google Scholar 

  26. Nowicka Z, Stawiski K, Tomasik B, Fendler W (2019) Extracellular miRNAs as biomarkers of head and neck cancer progression and metastasis. Int J Mol Sci 20(19):4799

    CAS  PubMed Central  Google Scholar 

  27. Nosratzehi T, Alijani E, Moodi M (2017) Salivary MMP-1, MMP-2, MMP-3 and MMP-13 levels in patients with oral lichen planus and squamous cell carcinoma. Asian Pac J Cancer Prev 18(7):1947–1951

    PubMed  PubMed Central  Google Scholar 

  28. Stott-Miller M, Houck JR, Lohavanichbutr P, Mendez E, Upton MP, Futran ND et al (2011) Tumor and salivary matrix metalloproteinase levels are strong diagnostic markers of oral squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 20(12):2628–2636

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang KD, Baeten K, Kenny L, Frazer IH, Scheper G, Punyadeera C (2019) Unlocking the potential of saliva-based test to detect HPV-16-driven oropharyngeal cancer. Cancers 11(4):473

    CAS  PubMed Central  Google Scholar 

  30. Keung EZ, Gershenwald JE (2018) The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Rev Anticancer Ther 18(8):775–84

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Bailey UM, Punyadeera C, Schulz BL (2014) Identification of salivary N-glycoproteins and measurement of glycosylation site occupancy by boronate glycoprotein enrichment and liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 28(5):471–482

    CAS  PubMed  Google Scholar 

  32. Tang KD, Menezes L, Baeten K, Walsh LJ, Whitfield BCS, Batstone MD et al (2020) Oral HPV16 prevalence in oral potentially malignant disorders and oral cavity cancers. Biomolecules 10(2):223

    CAS  PubMed Central  Google Scholar 

  33. Tang KD, Vasani S, Taheri T, Walsh LJ, Hughes BGM, Kenny L et al (2020) An occult HPV-driven oropharyngeal squamous cell carcinoma discovered through a saliva test. Front Oncol 10:408

    PubMed  PubMed Central  Google Scholar 

  34. Tang KD, Vasani S, Menezes L, Taheri T, Walsh LJ, Hughes BGM et al (2020) Oral HPV16 DNA as a screening tool to detect early oropharyngeal squamous cell carcinoma. Cancer Sci 111(10):3854–3861

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Salazar C, Nagadia R, Pandit P, Cooper-White J, Banerjee N, Dimitrova N et al (2014) A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr) 37(5):331–338

    CAS  Google Scholar 

  36. Toth M, Fridman R (2001) Assessment of gelatinases (MMP-2 and MMP-9 by gelatin zymography. Methods Mol Med 57:163–174

    CAS  PubMed  Google Scholar 

  37. Zhang X, Wan Y, Cooper-White J, Dimeski G, Atherton J, Punyadeera C (2013) Quantification of D-dimer levels in human saliva. Bioanalysis 5(18):2249–2256

    CAS  PubMed  Google Scholar 

  38. van der Merwe L, Wan Y, Cheong HJ, Perry C, Punyadeera C (2018) A pilot study to profile salivary angiogenic factors to detect head and neck cancers. BMC Cancer 18(1):734

    PubMed  PubMed Central  Google Scholar 

  39. Sun L, Liu L, Fu H, Wang Q, Shi Y (2016) Association of decreased expression of serum mir-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit 22:289–294

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mori Y, Akita K, Yashiro M, Sawada T, Hirakawa K, Murata T et al (2015) Binding of galectin-3, a β-galactoside-binding lectin, to MUC1 protein enhances phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT, promoting tumor cell malignancy. J Biol Chem 290(43):26125–26140

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang D, Chen ZG, Liu SH, Dong ZQ, Dalin M, Bao SS et al (2013) Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating beta-catenin. Acta Pharmacol Sin 34(1):176–184

    PubMed  Google Scholar 

  43. Santiago-Gomez A, Barrasa JI, Olmo N, Lecona E, Burghardt H, Palacin M et al (2013) 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and beta-catenin signaling, and MMP-2 expression. Biochim Biophys Acta 1833(9):2045–2056

    CAS  PubMed  Google Scholar 

  44. Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH et al (2010) Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138(3):1035e1-1045e2

    Google Scholar 

  45. Braeuer RR, Zigler M, Kamiya T, Dobroff AS, Huang L, Choi W et al (2012) Galectin-3 contributes to melanoma growth and metastasis via regulation of NFAT1 and autotaxin. Cancer Res 72(22):5757–5766

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Park YR, Lee ST, Kim SL, Liu YC, Lee MR, Shin JH et al (2016) MicroRNA-9 suppresses cell migration and invasion through downregulation of TM4SF1 in colorectal cancer. Int J Oncol 48(5):2135–2143

    CAS  PubMed  Google Scholar 

  47. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V et al (2005) Implication of galectin-3 in Wnt signaling. Cancer Res 65(9):3535–3537

    CAS  PubMed  Google Scholar 

  48. Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR et al (2000) gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev 14(11):1319–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen YJ, Lee LY, Chao YK, Chang JT, Lu YC, Li HF et al (2013) DSG3 facilitates cancer cell growth and invasion through the DSG3-plakoglobin-TCF/LEF-Myc/cyclin D1/MMP signaling pathway. PLoS ONE 8(5):e64088

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang J, Xiao L, Zhang Q, Peng Y, Wang Z, Liu Y (2020) Junction plakoglobin, a potential prognostic marker of oral squamous cell carcinoma, promotes proliferation, migration and invasion. J Oral Pathol Med 49(1):30–38

    CAS  PubMed  Google Scholar 

  51. Brancolini C, Sgorbissa A, Schneider C (1998) Proteolytic processing of the adherens junctions components beta-catenin and gamma-catenin/plakoglobin during apoptosis. Cell Death Differ 5(12):1042–1050

    CAS  PubMed  Google Scholar 

  52. AKTary Z, Alaee M, Pasdar M (2017) Beyond cell-cell adhesion: plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 8(19):32270–32291

    PubMed  PubMed Central  Google Scholar 

  53. Citron F, Armenia J, Franchin G, Polesel J, Talamini R, D’Andrea S et al (2017) An integrated approach identifies mediators of local recurrence in head and neck squamous carcinoma. Clin Cancer Res 23(14):3769–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nweke E, Ntwasa M, Brand M, Devar J, Smith M, Candy G (2020) Increased expression of plakoglobin is associated with upregulated MAPK and PI3K/AKT signalling pathways in early resectable pancreatic ductal adenocarcinoma. Oncol Lett 19(6):4133–4141

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wickline ED, Du Y, Stolz DB, Kahn M, Monga SP (2013) gamma-Catenin at adherens junctions: mechanism and biologic implications in hepatocellular cancer after beta-catenin knockdown. Neoplasia 15(4):421–434

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Manasa VG, Kannan S (2017) Impact of microRNA dynamics on cancer hallmarks: an oral cancer scenario. Tumour Biol 39(3):1010428317695920

    CAS  PubMed  Google Scholar 

  57. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ueda G, Sunakawa H, Nakamori K, Shinya T, Tsuhako W, Tamura Y et al (2006) Aberrant expression of β- and γ-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 35(4):356–361

    CAS  PubMed  Google Scholar 

  59. Aggarwal S, Sharma SC, Das SN (2015) Galectin-1 and galectin-3: plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. Clin Chim Acta 442:13–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of Saliva & Liquid Biopsy Translational Laboratory for their assistance in sample collection and processing. We also thank Trang Le, Jennifer Edmunds, Charmaine Micklewright, Jacqui Keller and Dana Middleton and the staff at the Royal Brisbane Women’s Hospital (RBWH) and the Princess Alexandra Hospital (PAH) for their assistance in head and neck cancer patients recruitment.

Funding

CP is funded by the Cancer Australia Grant (APP1145657), NHMRC Ideas Grant (APP 2002576) and the National Institutes of Health Grant (1R21EB030349-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agreed to the published version of the manuscript. Conceptualization—CP, methodology, YXW, formal analysis, data curation and investigation, all authors; writing—original draft preparation, YXW and KDT; writing—review and editing, all authors; funding acquisition, CP.

Corresponding author

Correspondence to Chamindie Punyadeera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the University of Queensland (UQ) Medical Ethical Institutional Board (HREC No: 2014000679 and 2014000862), the Princess Alexandra Hospital (PAH) Ethics Review Board (HREC/12/QPAH/381) and Queensland University of Technology (QUT) (HREC No: 1400000617 and 1400000641).

Consent to participate

All the participants provided written informed consent prior to recruitment and sample collection and could withdraw at any time. The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Zhang, X., Tang, K.D. et al. Overexpression of miRNA-9 enhances galectin-3 levels in oral cavity cancers. Mol Biol Rep 48, 3979–3989 (2021). https://doi.org/10.1007/s11033-021-06398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06398-7

Keywords

Navigation