Skip to main content
Log in

Application of the conventional and novel methods in testing EGFR variants for NSCLC patients in the last 10 years through different regions: a systematic review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Variants in the epidermal growth factor receptor (EGFR) gene are recognized as predictors of therapy response and are correlated with progression-free and overall survival in non-small cell lung cancer (NSCLC) patients. Molecularly guided therapy needs precise and cost-effective molecular tests. This review focused primarily on screening or target methods for the EGFR variants detection with diagnostic and prognostic potential in the clinical research published papers. Concerning the inclusion and exclusion criteria, the search interval comprised available articles published from 2010 until 2020 in three electronic databases, ISI Web of Science, Pub Med, and Scopus. The analysis of eligible studies started with 5647 and obtained the final 987 full-text articles analyzed as clinical research. The regions comprised were Africa, America, Australia, Asia, Euro-Asia, Europe, or a consortium of different countries. All of the tested methods were applied prevalently in Asia. In clinical research, the polymerase chain reaction (PCR), followed by sequencing methods have been involved mostly over the years. The identified high-through output approaches evolved to improve the survival and quality of the NSCLC patient’s life becoming more sensitive, specific, and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TMA:

Tissue microarray

FP:

Fluorescence polarization

AQUA:

Automated quantitative analysis system

FISH:

Fluorescence in situ hybridization

CISH:

Chromogenic in situ hybridization

SISH:

Silver-enhanced in situ hybridization

ISH:

In situ hybridization

MALDI TOF–MS:

Mass spectrometry, Matrix assisted laser desorption/Ionization time of flight mass spectrometry, Nucleotide mass spectrometry

ELISA:

Enzyme-linked immunosorbent assay

DHPLC:

Denaturing high performance liquid chromatography

HPLC:

High performance liquid chromatography

NGS:

Next generation sequencing (NGS) (with the advances), Deep sequencing (CAPP-Seq), SEQUENOM MassARRAYiPLEX assay

PCR:

Polymerase chain reaction (End point, classical PCR)

RD:

Recently developed: Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), Gold nanoparticle-based microarray, Liquid-chip array, Fluorescence resonance energy transfer-based preferential homoduplex formation assay (F-PHFA), Mach–Zehnder Interferometer (MZI) sensor and isothermal solid-phase DNA amplification (IDA) technique (MZI-IDA sensor system), Microfluidic paper-based electrochemical DNA biosensor (-PEDB)

PLA:

Proximity ligation assay

MaMTH:

Mammalian-membrane two-hybrid assay

HRMA:

High-resolution melting analysis

RT-PCR:

Reverse transcription PCR

qRT PCR:

Real-time quantitative reverse transcription PCR

qPCR:

Quantitative PCR or real time PCR: ‘BEAMing’, ‘Idylla’, ‘Cobas’ real time PCR, Peptide nucleic acid (PNA)-mediated PCR clamping

ARMS:

Amplification refractory mutation system, or allele specific PCR

dPCR:

Digital PCR or digital droplet PCR

SPM:

Specific PCR methods: Restriction fragment length polymorphism PCR (RFLP-PCR), PCR Invader method, Single-strand conformation polymorphism (PCR-SSCP), Mutant enriched PCR, Non-enriched PCR (NE-PCR), Cycleave assays, Multiplexed PCR SERS Surface enhanced Raman spectroscopy, PNA-aPCR-Liquid chip (PAPL) method

References

  1. Hood L, Rowen L (2013) The Human Genome Project: big science transforms biology and medicine. Genome Med 5(9):79. https://doi.org/10.1186/gm483

    Article  PubMed  PubMed Central  Google Scholar 

  2. Collins FS, Fink L (1995) The Human Genome Project. Alcohol Health Res World 19(3):190–195

    PubMed  PubMed Central  Google Scholar 

  3. Gibbs RA (2020) The Human Genome Project changed everything. Nat Rev Genet 21(10):575–576. https://doi.org/10.1038/s41576-020-0275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bashir NA, Ragab ES, Khabour OF, Khassawneh BY (2018) The association between epidermal growth factor receptor (EGFR) gene polymorphisms and lung cancer risk. Biomolecules 8(3):53. https://doi.org/10.3390/biom8030053

    Article  CAS  PubMed Central  Google Scholar 

  5. Liu C, Xu X, Zhou Y (2015) Association between EGFR polymorphisms and the risk of lung cancer. Int J Clin Exp Pathol 8(11):15245–15249

    PubMed  PubMed Central  Google Scholar 

  6. Oizumi S, Kobayashi K, Inoue A, Maemondo M, Sugawara S, Yoshizawa H, Isobe H, Harada M, Kinoshita I, Okinaga S, Kato T, Harada T, Gemma A, Saijo Y, Yokomizo Y, Morita S, Hagiwara K, Nukiwa T (2012) Quality of life with gefitinib in patients with EGFR-mutated non-small cell lung cancer: quality of life analysis of North East Japan Study Group 002 Trial. Oncologist 17(6):863–870. https://doi.org/10.1634/theoncologist.2011-0426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Yuan X, Chen Y, Du XJ, Yu S, Yang M (2013) Role of EGFR SNPs in survival of advanced lung adenocarcinoma patients treated with Gefitinib. Gene 517(1):60–64. https://doi.org/10.1016/j.gene.2012.12.087

    Article  CAS  PubMed  Google Scholar 

  8. Gagan J, Van Allen EM (2015) Next-generation sequencing to guide cancer therapy. Genome Med 7(1):80. https://doi.org/10.1186/s13073-015-0203-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lightbody G, Haberland V, Browne F, Taggart L, Zheng H, Parkes E, Blayney JK (2019) Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief Bioinform 20(5):1795–1811. https://doi.org/10.1093/bib/bby051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S, Hellemans J, Speleman F, Vandesompele J (2011) Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res 39(9):e63. https://doi.org/10.1093/nar/gkr065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly R, Albert M, de Ladurantaye M, Moore M, Dokun O, Bartlett JMS (2019) RNA and DNA integrity remain stable in frozen tissue after long-term storage at cryogenic temperatures: a report from the Ontario Tumour Bank. Biopreserv Biobank 17(4):282–287. https://doi.org/10.1089/bio.2018.0095

    Article  CAS  PubMed  Google Scholar 

  12. Siegel RL, Miller KD (2020) Cancer statistics. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  13. Nakamura H, Kawasaki N, Taguchi M, Kabasawa K (2006) Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax 61(2):140–145. https://doi.org/10.1136/thx.2005.042275

    Article  CAS  PubMed  Google Scholar 

  14. Hirsch FR, Varella-Garcia M, Cappuzzo F (2009) Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28(Suppl 1):S32–S37. https://doi.org/10.1038/onc.2009.199

    Article  CAS  PubMed  Google Scholar 

  15. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354. https://doi.org/10.1038/nrc1609

    Article  CAS  PubMed  Google Scholar 

  16. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD, Gazdar AF (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5):339–346. https://doi.org/10.1093/jnci/dji055

    Article  CAS  PubMed  Google Scholar 

  17. Yatabe Y, Takahashi T, Mitsudomi T (2008) Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res 68(7):2106–2111. https://doi.org/10.1158/0008-5472.can-07-5211

    Article  CAS  PubMed  Google Scholar 

  18. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941-d947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed  Google Scholar 

  19. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181. https://doi.org/10.1038/nrc2088

    Article  CAS  PubMed  Google Scholar 

  20. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, NY) 304(5676):1497–1500. https://doi.org/10.1126/science.1099314

    Article  CAS  Google Scholar 

  21. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. https://doi.org/10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  22. Nomura M, Shigematsu H, Li L, Suzuki M, Takahashi T, Estess P, Siegelman M, Feng Z, Kato H, Marchetti A, Shay JW, Spitz MR, Wistuba II, Minna JD, Gazdar AF (2007) Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Med 4(4):e125. https://doi.org/10.1371/journal.pmed.0040125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu W, He L, Ramírez J, Krishnaswamy S, Kanteti R, Wang YC, Salgia R, Ratain MJ (2011) Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res 71(7):2423–2427. https://doi.org/10.1158/0008-5472.can-10-2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurišić V, Obradovic J, Pavlović S, Djordjevic N (2018) Epidermal growth factor receptor gene in non-small-cell lung cancer: the importance of promoter polymorphism investigation. Anal Cell Pathol (Amsterdam) 2018:6192187. https://doi.org/10.1155/2018/6192187

    Article  CAS  Google Scholar 

  25. Liu G, Gurubhagavatula S, Zhou W, Wang Z, Yeap BY, Asomaning K, Su L, Heist R, Lynch TJ, Christiani DC (2008) Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J 8(2):129–138. https://doi.org/10.1038/sj.tpj.6500444

    Article  CAS  PubMed  Google Scholar 

  26. Han SW, Jeon YK, Lee KH, Keam B, Hwang PG, Oh DY, Lee SH, Kim DW, Im SA, Chung DH, Heo DS, Bang YJ, Kim TY (2007) Intron 1 CA dinucleotide repeat polymorphism and mutations of epidermal growth factor receptor and gefitinib responsiveness in non-small-cell lung cancer. Pharmacogenet Genomics 17(5):313–319. https://doi.org/10.1097/FPC.0b013e328011abc0

    Article  CAS  PubMed  Google Scholar 

  27. Winther Larsen A, Nissen PH, Meldgaard P, Weber B, Sorensen BS (2014) EGFR CA repeat polymorphism predict clinical outcome in EGFR mutation positive NSCLC patients treated with erlotinib. Lung Cancer (Amsterdam, Netherlands) 85(3):435–441. https://doi.org/10.1016/j.lungcan.2014.06.016

    Article  Google Scholar 

  28. Winther-Larsen A, Nissen PH, Jakobsen KR, Demuth C, Sorensen BS, Meldgaard P (2015) Genetic polymorphism in the epidermal growth factor receptor gene predicts outcome in advanced non-small cell lung cancer patients treated with erlotinib. Lung Cancer (Amsterdam, Netherlands) 90(2):314–320. https://doi.org/10.1016/j.lungcan.2015.09.003

    Article  Google Scholar 

  29. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VA (2006) Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res Off J Am Assoc Cancer Res 12(3 Pt 1):839–844. https://doi.org/10.1158/1078-0432.ccr-05-1846

    Article  CAS  Google Scholar 

  30. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388. https://doi.org/10.1056/NEJMoa0909530

    Article  CAS  PubMed  Google Scholar 

  31. Jurisic V, Vukovic V (2020) EGFR polymorphism and survival of NSCLC patients treated with TKIs: a systematic review and meta-analysis. 2020:1973241. https://doi.org/10.1155/2020/1973241

  32. Obradovic J, Jurisic V (2012) Evaluation of current methods to detect the mutations of epidermal growth factor receptor in non-small cell lung cancer patients. Multidiscip Respir Med 7(1):52. https://doi.org/10.1186/2049-6958-7-52

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  34. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994. https://doi.org/10.1101/gr.6.10.986

    Article  CAS  PubMed  Google Scholar 

  35. Soh J, Toyooka S, Matsuo K, Yamamoto H, Wistuba II, Lam S, Fong KM, Gazdar AF, Miyoshi S (2015) Ethnicity affects EGFR and KRAS gene alterations of lung adenocarcinoma. Oncol Lett 10(3):1775–1782. https://doi.org/10.3892/ol.2015.3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Midha A, Dearden S, McCormack R (2015) EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res 5(9):2892–2911

    PubMed  PubMed Central  Google Scholar 

  37. Yu J, Kane S, Wu J, Benedettini E, Li D, Reeves C, Innocenti G, Wetzel R, Crosby K, Becker A, Ferrante M, Cheung WC, Hong X, Chirieac LR, Sholl LM, Haack H, Smith BL, Polakiewicz RD, Tan Y, Gu TL, Loda M, Zhou X, Comb MJ (2009) Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 15(9):3023–3028. https://doi.org/10.1158/1078-0432.ccr-08-2739

    Article  CAS  Google Scholar 

  38. Kato Y, Peled N, Wynes MW, Yoshida K, Pardo M, Mascaux C, Ohira T, Tsuboi M, Matsubayashi J, Nagao T, Ikeda N, Hirsch FR (2010) Novel epidermal growth factor receptor mutation-specific antibodies for non-small cell lung cancer: immunohistochemistry as a possible screening method for epidermal growth factor receptor mutations. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 5(10):1551–1558. https://doi.org/10.1097/JTO.0b013e3181e9da60

    Article  Google Scholar 

  39. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97(9):643–655. https://doi.org/10.1093/jnci/dji112

    Article  CAS  PubMed  Google Scholar 

  40. Genova C, Socinski MA, Hozak RR, Mi G, Kurek R, Shahidi J, Paz-Ares L, Thatcher N, Rivard CJ, Varella-Garcia M, Hirsch FR (2018) EGFR gene copy number by FISH may predict outcome of necitumumab in squamous lung carcinomas: analysis from the SQUIRE study. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 13(2):228–236. https://doi.org/10.1016/j.jtho.2017.11.109

    Article  CAS  Google Scholar 

  41. Varella-Garcia M, Diebold J, Eberhard DA, Geenen K, Hirschmann A, Kockx M, Nagelmeier I, Rüschoff J, Schmitt M, Arbogast S, Cappuzzo F (2009) EGFR fluorescence in situ hybridisation assay: guidelines for application to non-small-cell lung cancer. J Clin Pathol 62(11):970–977. https://doi.org/10.1136/jcp.2009.066548

    Article  CAS  PubMed  Google Scholar 

  42. Sholl LM, Xiao Y, Joshi V, Yeap BY, Cioffredi LA, Jackman DM, Lee C, Jänne PA, Lindeman NI (2010) EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol 133(6):922–934. https://doi.org/10.1309/ajcpst1cthzs3psz

    Article  CAS  PubMed  Google Scholar 

  43. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448. https://doi.org/10.1016/0022-2836(75)90213-2

    Article  CAS  PubMed  Google Scholar 

  44. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  45. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435. https://doi.org/10.1007/s13353-011-0057-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR (2016) Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev Mol Diagn 16(3):357–372. https://doi.org/10.1586/14737159.2016.1133298

    Article  CAS  PubMed  Google Scholar 

  48. Gupta AK, Gupta UD (2014) Chapter 19—Next generation sequencing and its applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416002-6.00019-5

  49. Jing C, Mao X, Wang Z, Sun K, Ma R, Wu J, Cao H (2018) Next-generation sequencing-based detection of EGFR, KRAS, BRAF, NRAS, PIK3CA, Her-2 and TP53 mutations in patients with non-small cell lung cancer. Mol Med Rep 18(2):2191–2197. https://doi.org/10.3892/mmr.2018.9210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Investig Dermatol 133(8):e11. https://doi.org/10.1038/jid.2013.248

    Article  CAS  PubMed  Google Scholar 

  51. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83(12):4327–4341. https://doi.org/10.1021/ac2010857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng X, Qin JJ, Zheng BS, Huang LL, Xie XY, Zhou HF (2014) Association of epidermal growth factor receptor (EGFR) gene polymorphism with lung cancer risk: a systematic review. J Recept Signal Transduct Res 34(5):333–334. https://doi.org/10.3109/10799893.2014.885052

    Article  CAS  PubMed  Google Scholar 

  53. Dearden S, Brown H, Jenkins S, Thress KS, Cantarini M, Cole R, Ranson M, Jänne PA (2017) EGFR T790M mutation testing within the osimertinib AURA Phase I study. Lung Cancer (Amsterdam, Netherlands) 109:9–13. https://doi.org/10.1016/j.lungcan.2017.04.011

    Article  Google Scholar 

  54. Hong MJ, Lee SY, Choi JE, Kang HG, Do SK, Lee JH, Yoo SS, Lee EB, Seok Y, Cho S, Jheon S, Lee J, Cha SI, Kim CH, Park JY (2018) Intronic variant of EGFR is associated with GBAS expression and survival outcome of early-stage non-small cell lung cancer. 9(8):916–923. https://doi.org/10.1111/1759-7714.12757

  55. Otsubo K, Sakai K, Takeshita M, Harada D, Azuma K, Ota K, Akamatsu H, Goto K, Horiike A, Kurata T, Nakagaki N, Nosaki K, Iwama E, Nakanishi Y, Nishio K, Okamoto I (2019) Genetic profiling of non-small cell lung cancer at development of resistance to first- or second-generation EGFR-TKIs by CAPP-Seq analysis of circulating tumor DNA. Oncologist 24(8):1022–1026. https://doi.org/10.1634/theoncologist.2019-0101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ke R, Mignardi M, Hauling T, Nilsson M (2016) Fourth generation of next-generation sequencing technologies: promise and consequences. Hum Mutat 37(12):1363–1367. https://doi.org/10.1002/humu.23051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pao W, Ladanyi M (2007) Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res Off J Am Assoc Cancer Res 13(17):4954–4955. https://doi.org/10.1158/1078-0432.ccr-07-1387

    Article  CAS  Google Scholar 

  58. Jang K, Choi J, Park C, Na S (2017) Label-free and high-sensitive detection of Kirsten rat sarcoma viral oncogene homolog and epidermal growth factor receptor mutation using Kelvin probe force microscopy. Biosens Bioelectron 87:222–228. https://doi.org/10.1016/j.bios.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  59. Xue L, Fei JJ, Song Y, Xu RH, Bai YJ (2014) Visual DNA microarray for detection of epidermal growth factor receptor (EGFR) gene mutations. Scand J Clin Lab Investig 74(8):693–699. https://doi.org/10.3109/00365513.2014.951680

    Article  CAS  Google Scholar 

  60. Liu Q, Lim SY, Soo RA, Park MK, Shin Y (2015) A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosens Bioelectron 74:865–871. https://doi.org/10.1016/j.bios.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  61. Tian T, Liu H, Li L, Yu J, Ge S, Song X, Yan M (2017) Paper-based biosensor for noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sens Actuators B Chem 251:440–445. https://doi.org/10.1016/j.snb.2017.05.082

    Article  CAS  Google Scholar 

  62. Zhang H, Liu D, Li S, Zheng Y, Yang X, Li X, Zhang Q, Qin N, Lu J, Ren-Heidenreich L, Yang H, Wu Y, Zhang X, Nong J, Sun Y, Zhang S (2013) Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology. J Mol Diagn JMD 15(6):819–826. https://doi.org/10.1016/j.jmoldx.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  63. Toki MI, Carvajal-Hausdorf DE, Altan M, McLaughlin J, Henick B, Schalper KA, Syrigos KN, Rimm DL (2016) EGFR-GRB2 protein colocalization is a prognostic factor unrelated to overall EGFR expression or EGFR mutation in lung adenocarcinoma. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 11(11):1901–1911. https://doi.org/10.1016/j.jtho.2016.06.025

    Article  Google Scholar 

  64. Petschnigg J, Groisman B, Kotlyar M, Taipale M, Zheng Y, Kurat CF, Sayad A, Sierra JR, Mattiazzi Usaj M, Snider J, Nachman A, Krykbaeva I, Tsao MS, Moffat J, Pawson T, Lindquist S, Jurisica I, Stagljar I (2014) The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat Methods 11(5):585–592. https://doi.org/10.1038/nmeth.2895

    Article  CAS  PubMed  Google Scholar 

  65. Xu X, Xing S, Xu M, Fu P, Gao T, Zhang X, Zhao Y, Zhao C (2019) Highly sensitive and specific screening of EGFR mutation using a PNA microarray-based fluorometric assay based on rolling circle amplification and graphene oxide. RSC Adv 9(66):38298–38308. https://doi.org/10.1039/C9RA06758B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanibuchi M, Kanoh A, Kuramoto T, Saito T, Tobiume M, Saijo A, Kozai H, Kondo M, Morizumi S, Yoneda H, Kagawa K, Ogino H, Sato S, Kawano H, Otsuka K, Toyoda Y, Nokihara H, Goto H, Nishioka Y (2019) Development, validation, and comparison of gene analysis methods for detecting EGFR mutation from non-small cell lung cancer patients-derived circulating free DNA. Oncotarget 10(38):3654–3666. https://doi.org/10.18632/oncotarget.26951

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215-010822

    Article  CAS  PubMed  Google Scholar 

  68. Aalipour A, Dudley JC, Park SM, Murty S, Chabon JJ, Boyle EA, Diehn M, Gambhir SS (2018) Deactivated CRISPR associated protein 9 for minor-allele enrichment in cell-free DNA. Clin Chem 64(2):307–316. https://doi.org/10.1373/clinchem.2017.278911

    Article  CAS  PubMed  Google Scholar 

  69. Jia C, Huai C, Ding J, Hu L, Su B, Chen H, Lu D (2018) New applications of CRISPR/Cas9 system on mutant DNA detection. Gene 641:55–62. https://doi.org/10.1016/j.gene.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  70. Shi Y, Au JS-K, Thongprasert S, Srinivasan S, Tsai C-M, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang P-C (2014) A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 9(2):154–162. https://doi.org/10.1097/JTO.0000000000000033

    Article  CAS  Google Scholar 

  71. Lin H-T, Liu F-C, Wu C-Y, Kuo C-F, Lan W-C, Yu H-P (2019) Epidemiology and survival outcomes of lung cancer: a population-based study. Biomed Res Int 2019:8148156. https://doi.org/10.1155/2019/8148156

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  73. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 8(7):823–859. https://doi.org/10.1097/JTO.0b013e318290868f

    Article  CAS  Google Scholar 

  74. Pennell NA, Arcila ME, Gandara DR, West H (2019) Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet 39:531–542. https://doi.org/10.1200/edbk_237863

    Article  Google Scholar 

  75. Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, Tan DSW, Yang JC, Azrif M, Mitsudomi T, Park K, Soo RA, Chang JWC, Alip A, Peters S, Douillard JY (2019) Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol 30(2):171–210. https://doi.org/10.1093/annonc/mdy554

    Article  Google Scholar 

  76. Yi QQ, Yang R, Shi JF, Zeng NY, Liang DY, Sha S, Chang Q (2020) Effect of preservation time of formalin-fixed paraffin-embedded tissues on extractable DNA and RNA quantity. J Int Med Res 48(6):300060520931259. https://doi.org/10.1177/0300060520931259

    Article  CAS  PubMed  Google Scholar 

  77. Shaozhang Z, Ming Z, Haiyan P, Aiping Z, Qitao Y, Xiangqun S (2014) Comparison of ARMS and direct sequencing for detection of EGFR mutation and prediction of EGFR-TKI efficacy between surgery and biopsy tumor tissues in NSCLC patients. Med Oncol 31(5):926. https://doi.org/10.1007/s12032-014-0926-3

    Article  CAS  PubMed  Google Scholar 

  78. Zhang BO, Xu CW, Shao Y, Wang HT, Wu YF, Song YY, Li XB, Zhang Z, Wang WJ, Li LQ, Cai CL (2015) Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation. Exp Ther Med 9(4):1383–1388. https://doi.org/10.3892/etm.2015.2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garibyan L, Avashia N (2013) Polymerase chain reaction. J Investig Dermatol 133(3):1–4. https://doi.org/10.1038/jid.2013.1

    Article  CAS  PubMed  Google Scholar 

  80. Naoki K, Soejima K, Okamoto H, Hamamoto J, Hida N, Nakachi I, Yasuda H, Nakayama S, Yoda S, Satomi R, Ikemura S, Terai H, Sato T, Watanabe K (2011) The PCR-invader method (structure-specific 5’ nuclease-based method), a sensitive method for detecting EGFR gene mutations in lung cancer specimens; comparison with direct sequencing. Int J Clin Oncol 16(4):335–344. https://doi.org/10.1007/s10147-011-0187-5

    Article  CAS  PubMed  Google Scholar 

  81. Wang J, Ramakrishnan R, Tang Z, Fan W, Kluge A, Dowlati A, Jones RC, Ma PC (2010) Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem 56(4):623–632. https://doi.org/10.1373/clinchem.2009.134973

    Article  CAS  PubMed  Google Scholar 

  82. Kim CH, Kim SH, Park SY, Yoo J, Kim SK, Kim HK (2015) Identification of EGFR mutations by immunohistochemistry with EGFR mutation-specific antibodies in biopsy and resection specimens from pulmonary adenocarcinoma. Cancer Res Treat Off J Korean Cancer Assoc 47(4):653–660. https://doi.org/10.4143/crt.2014.118

    Article  CAS  Google Scholar 

  83. Kim HJ, Kim WS, Shin KC, Lee GH, Kim MJ, Lee JE, Song KS, Kim SY, Lee KY (2011) Comparative analysis of peptide nucleic acid (PNA)-mediated real-time PCR clamping and DNA direct sequencing for EGFR mutation detection. Tuberc Respir Dis 70(1):21–27. https://doi.org/10.4046/trd.2011.70.1.21

    Article  Google Scholar 

  84. Kim HR, Lee SY, Hyun DS, Lee MK, Lee HK, Choi CM, Yang SH, Kim YC, Lee YC, Kim SY, Jang SH, Lee JC, Lee KY (2013) Detection of EGFR mutations in circulating free DNA by PNA-mediated PCR clamping. J Exp Clin Cancer Res CR 32(1):50. https://doi.org/10.1186/1756-9966-32-50

    Article  CAS  PubMed  Google Scholar 

  85. Nakamura H, Koizumi H, Sakai H, Kimura H, Miyazawa T, Marushima H, Saji H, Takagi M (2018) Accuracy of the cobas EGFR mutation assay in non-small-cell lung cancer compared with three laboratory-developed tests. Clin Lung Cancer 19(2):170–174. https://doi.org/10.1016/j.cllc.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  86. Saiyaros K, Kritpetcharat P, Pairojkul C, Sithithaworn J (2019) Detection of epidermal growth factor receptor (EGFR) gene mutation in formalin fixed paraffin embedded tissue by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) in non-small cell lung cancer in the Northeastern Region of Thailand. Asian Pac J Cancer Prev APJCP 20(5):1339–1343. https://doi.org/10.31557/apjcp.2019.20.5.1339

    Article  CAS  PubMed  Google Scholar 

  87. Que D, Xiao H, Zhao B, Zhang X, Wang Q, Xiao H, Wang G (2016) EGFR mutation status in plasma and tumor tissues in non-small cell lung cancer serves as a predictor of response to EGFR-TKI treatment. Cancer Biol Ther 17(3):320–327. https://doi.org/10.1080/15384047.2016.1139238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I (2015) The 2015 World Health Organization Classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 10(9):1243–1260. https://doi.org/10.1097/jto.0000000000000630

    Article  Google Scholar 

  89. Tiseo M, Rossi G, Capelletti M, Sartori G, Spiritelli E, Marchioni A, Bozzetti C, De Palma G, Lagrasta C, Campanini N, Camisa R, Boni L, Franciosi V, Rindi G, Ardizzoni A (2010) Predictors of gefitinib outcomes in advanced non-small cell lung cancer (NSCLC): study of a comprehensive panel of molecular markers. Lung Cancer (Amsterdam, Netherlands) 67(3):355–360. https://doi.org/10.1016/j.lungcan.2009.04.021

    Article  Google Scholar 

  90. Fenizia F, De Luca A, Pasquale R, Sacco A, Forgione L, Lambiase M, Iannaccone A, Chicchinelli N, Franco R, Rossi A, Morabito A, Rocco G, Piccirillo MC, Normanno N (2015) EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Futur Oncol (London, England) 11(11):1611–1623. https://doi.org/10.2217/fon.15.23

    Article  CAS  Google Scholar 

  91. Seki Y, Fujiwara Y, Kohno T, Yoshida K, Goto Y, Horinouchi H, Kanda S, Nokihara H, Yamamoto N, Kuwano K, Ohe Y (2018) Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression. ESMO Open 3(2):e000292. https://doi.org/10.1136/esmoopen-2017-000292

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jiang XW, Liu W, Zhu XY, Xu XX (2019) Evaluation of EGFR mutations in NSCLC with highly sensitive droplet digital PCR assays. Mol Med Rep 20(1):593–603. https://doi.org/10.3892/mmr.2019.10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schluckebier L, Caetano R, Garay OU, Montenegro GT, Custodio M, Aran V (2020) Cost-effectiveness analysis comparing companion diagnostic tests for EGFR, ALK, and ROS1 versus next-generation sequencing (NGS) in advanced adenocarcinoma lung cancer patients. BMC Cancer 20(1):875. https://doi.org/10.1186/s12885-020-07240-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, 175056.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, editing and supervision: VJ. Formal analysis, investigation and writing: JO. Search the database of papers: JT.

Corresponding author

Correspondence to Vladimir Jurisic.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

The work was done according to all ethical principles and criteria of good scientific practice and data used from official databases that were processed statistically. The study does not contain personal data about patients nor does it include animal studies.

Consent to publish

All authors agree with the publication of the research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obradovic, J., Todosijevic, J. & Jurisic, V. Application of the conventional and novel methods in testing EGFR variants for NSCLC patients in the last 10 years through different regions: a systematic review. Mol Biol Rep 48, 3593–3604 (2021). https://doi.org/10.1007/s11033-021-06379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06379-w

Keywords

Navigation