Skip to main content

Advertisement

Log in

Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is one of the most widely spread metabolic disordersand is also referred as a ‘lifestyle’ disorder. According toa study conducted by IDB, the number of individuals affected with diabetes is expected to increase from 463 to 700 million by the end of year 2045. Thus, there is a great need to developed targeted therapies that can maintain homeostasis of glucose levels and improving insulin sensitivity which can overcome hurdles associated with conventional medicine. Detailed analysis was conducted by analyzing various research and review papers which were searched using MEDLINE and EMBASE using various keywords. This search retrieved the most appropriate content on these molecules targeting Nrf-2 functions and Nrf-2 pathway associated with diabetic neuropathy and nephropathy. In this review article, we have highlighted the role of Nrf-2 in diabetic associated complications of neuropathy and nephropathy. Since hyperglycemia is associated with oxidative stress and inflammation, regulating Nrf-2 activity through various synthetic and natural activators whichmay provide therapeutic benefits for the treatment and mitigation of diabetic neuropathy and nephropathy as well. Based on the available literature on Nrf-2 activity and despite some controversies in the association of Nrf-2 activity and its therapeutic usage, it can be concluded that regulation of this pathway is a trigger in the development of diabetes-associated complications. Thus, targeting this pathway with various activators may emerge as a novel therapy in the treatment of diabetes and diabetes-associated complications.

Graphic abstract

Nrf-2 activation leading to regulation of various downstream pathways responsible for managament of Diabetic neuropathy and nephropathy

Legend: Activities regulated by the activation of Nrf-2 pathway by Natural and Synthetic activators. Various downstream signalling pathway are involved in increase (+) and decrease () in levels of Nrf-2 levels. Subsequently controlling various mechanism involved in the pathogenies of Diabetic neuropathy and nephropathy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end products

AIDS:

Acquired immunodeficiency syndrome

AKT:

Progressive ankylosis protein

ARE:

Antioxidant response element

ARE:

Anti-oxidant response element

ATF:

Activating transcription factor

bZIP:

Basic leucine zipper

CAT:

Catalase

CBP:

CREB-binding protein

CNC-bZip:

Basic region leucine zipper factor family’

COPD:

Chronic obstructive pulmonary disease

COX-2:

Cyclooxygenase-2

CREB:

CAMP response element binding protein

DMF:

Dimethyl fumarate

DN:

Diabetic nephropathy

DPP-4:

Dipeptidyl peptidase-4

FDA:

Food and drug administration

G-6-PD:

Glucose-6-phosphate dehydrogenase

GCL:

Glutamate cysteine ligase

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCLM:

Glutamate-cysteine ligase catalytic subunit

GLP-1:

Glucagon-like peptide-1

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSK-3:

Glycogen synthase kinase 3

GSK-3β:

Glycogen synthase kinase-3beta

GST:

Glutathione S-transferase

HMOX1:

Heme oxygenase decycling-1

O-1:

Heme oxygenase-1

Hrd1- 3:

Hydroxy-3-methylglutaryl reductase degradation 1

IDF:

International diabetes federation

IRE-1:

Inositol requiring protein

JNK:

C-Jun N-terminal kinases

MDM2:

Murine double minue-2

NF-κB:

Nuclear factor kappa B

NF-κB:

Nuclear factor-kappa B

NQO-1:

NADPH-quinone oxidoreductase-1

Nrf-2:

Nuclear factor E2-related factor 2

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SRXN1:

Sulfiredoxin 1

STZ:

Streptozotocin

T2D:

Type 2 diabetes

TGF-B:

Transforming growth factor-beta

UDP:

Uridine 5′-diphospho-glucuronosyltransferas

UGT:

UDP-glucuronosyltransferase

WHO:

World health organization

β-TrCP:

Beta-transducin repeats-containing protein

References

  1. IDF data https://diabetesatlas.org/data/en/world/. Accessed 22 Nov 2020

  2. Centers for Disease Control and Prevention (2020) National diabetes statistics report. Atlanta: centers for disease control and prevention, US Dept of Health and Human Services. 2020.

  3. Behl T, Kaur I, Kotwani A (2016) Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol 61(2):187–196

    PubMed  Google Scholar 

  4. Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3):581–589

    CAS  PubMed  Google Scholar 

  5. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81(8):455–470

    CAS  PubMed  Google Scholar 

  6. Gupta A, Behl T, Sachdeva M (2020) Key milestones in the diabetes research: a comprehensive update. Obesity Med 17:100183

    Google Scholar 

  7. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf-2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    CAS  PubMed  Google Scholar 

  8. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M (1997) An Nrf-2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    CAS  PubMed  Google Scholar 

  9. Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf-2. J Biol Chem 274(47):33627–33636

    CAS  PubMed  Google Scholar 

  10. Wu KC, McDonald PR, Liu JJ, Chaguturu R, Klaassen CD (2012) Implementation of a high-throughput screen for identifying small molecules to activate the Keap1-Nrf-2-ARE pathway. PLoS ONE 7(10):e44686

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramkumar KM, Sekar TV, Foygel K, Elango B, Paulmurugan R (2013) Reporter protein complementation imaging assay to screen and study Nrf-2 activators in cells and living animals. Anal Chem 85(15):7542–7549

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, Zhang DD (2011) Therapeutic potential of Nrf-2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MS, Manchope MF, Zaninelli TH, Casagrande R, Verri WA Jr (2019) Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Front Pharmacol 9:1536

    PubMed  PubMed Central  Google Scholar 

  14. Ma Q (2013) Role of Nrf-2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayes JD, Dinkova-Kostova AT (2014) The Nrf-2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    CAS  PubMed  Google Scholar 

  16. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107

    CAS  PubMed  Google Scholar 

  17. Motohashi H, Katsuoka F, Engel JD, Yamamoto M (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf-2 regulatory pathway. Proc Natl Acad Sci 101(17):6379–6384

    CAS  PubMed  Google Scholar 

  18. Motohashi H, Yamamoto M (2004) Nrf-2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557

    CAS  PubMed  Google Scholar 

  19. Tocchetti GN, Rigalli JP, Arana MR, Villanueva SS, Mottino AD (2016) Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 303:45–57

    CAS  PubMed  Google Scholar 

  20. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M (2005) Evolutionary conserved N-terminal domain of Nrf-2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys 433(2):342–350

    CAS  PubMed  Google Scholar 

  21. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26(8):2887–2900

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf-2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biol Med 88:108–146

    CAS  Google Scholar 

  23. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin OU, Woodgett JR (2000) Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406(6791):86–90

    CAS  PubMed  Google Scholar 

  25. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, de Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf-2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279(10):8919–8929

    CAS  PubMed  Google Scholar 

  26. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A (2006) Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf-2. J Biol Chem 281(21):14841–14851

    CAS  PubMed  Google Scholar 

  27. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E, Fang D, Zhang DD (2014) Hrd1 suppresses Nrf-2-mediated cellular protection during liver cirrhosis. Genes Dev 28(7):708–722

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwak MK, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf-2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the Nrf-2 promoter. Mol Cell Biol 22(9):2883–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee OH, Jain AK, Papusha V, Jaiswal AK (2007) An auto-regulatory loop between stress sensors INrf-2 and Nrf-2 controls their cellular abundance. J Biol Chem 282(50):36412–36420

    CAS  PubMed  Google Scholar 

  30. Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood J Am Soc Hematol 116(20):4338–4348

    CAS  Google Scholar 

  31. Gupta A, Shah K, Oza MJ, Behl T (2019) Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 109:484–492

    CAS  PubMed  Google Scholar 

  32. Sun Z, Chin YE, Zhang DD (2009) Acetylation of Nrf-2 by p300/CBP augments promoter-specific DNA binding of Nrf-2 during the antioxidant response. Mol Cell Biol 29(10):2658–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf-2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood J Am Soc Hematol 120(26):5188–5198

    CAS  Google Scholar 

  34. Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF-2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289(22):15244–15258

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun CC, Li SJ, Yang CL, Xue RL, Xi YY, Wang L, Zhao QL, Li DJ (2015) Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx mice via NF-E2-related factor 2 (Nrf-2)-mediated inhibition of NF-κB signaling pathway. J Biol Chem 290(29):17784–17795

    CAS  PubMed  Google Scholar 

  36. Zwacka RM, Zhou W, Zhang Y, Darby CJ, Dudus L, Halldorson J, Oberley L, Engelhardt JF (1998) Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-κB activation. Nat Med 4(6):698–704

    CAS  PubMed  Google Scholar 

  37. Kim GY, Jeong H, Yoon HY, Yoo HM, Lee J, Park SH, Lee CE (2020) Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Rep 53(12):640–645

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun J, Wang HJ, Yu J, Li T, Han Y (2020) Protective effect of celastrol on type 2 diabetes mellitus with nonalcoholic fatty liver disease in mice. Food Sci Nutr 8(11):6207–6216

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupta A, Behl T, Panichayupakaranan P (2019) A review of phytochemistry and pharmacology profile of Juglans regia. Obesity Med 16:100142

    Google Scholar 

  40. Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/Nrf-2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6(9):3777–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar A, Mittal R (2017) Nrf-2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology 25(4):393–402

    CAS  PubMed  Google Scholar 

  42. Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM (2015) The emerging role of redox-sensitive Nrf-2–Keap1 pathway in diabetes. Pharmacol Res 91:104–114

    CAS  PubMed  Google Scholar 

  43. Zhang K, Xu Y (2020) Suppressing BRD4 exhibits protective effects against vincristine-induced peripheral neuropathy by alleviating inflammation and oxidative stress. Biochem Biophys Res Commun 532(2):271–279

    CAS  PubMed  Google Scholar 

  44. Dos Santos GG, Oliveira AL, Santos DS, do Espirito Santo RF, Silva DN, Juiz PJ, Soares MB, Villarreal CF (2020) Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord. Life Sci 265:118755

    PubMed  Google Scholar 

  45. Nioi P, Nguyen T, Sherratt PJ, Pickett CB (2005) The carboxy-terminal Neh3 domain of Nrf-2 is required for transcriptional activation. Mol Cell Biol 25(24):10895–10906

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun Z, Huang Z, Zhang DD (2009) Phosphorylation of Nrf-2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf-2-dependent antioxidant response. PLoS ONE 4(8):e6588

    PubMed  PubMed Central  Google Scholar 

  47. Petit-Paitel A (2010) GSK-3beta: a central kinase for neurodegenerative diseases. Med Sci 26(5):516–521

    Google Scholar 

  48. Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, Tobón-Velasco JC, Devijver H, García-Mayoral MF, Van Leuven F, Hayes JD (2012) Structural and functional characterization of Nrf-2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol Cell Biol 32(17):3486–3499

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rojo AI, Sagarra MR, Cuadrado A (2008) GSK-3β down-regulates the transcription factor Nrf-2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 105(1):192–202

    CAS  PubMed  Google Scholar 

  50. Culbreth M, Aschner M (2018) GSK-3β, a double-edged sword in Nrf2 regulation: implications for neurological dysfunction and disease. F1000Research 7:1042

    Google Scholar 

  51. Sun Z, Chin YE, Zhang DD (2009) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29(10):2658–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286(9):7629–7640

    CAS  PubMed  Google Scholar 

  53. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774

    CAS  PubMed  Google Scholar 

  54. Steinberg SF (2015) Mechanisms for redox-regulation of protein kinase C. Front Pharmacol 6:128

    PubMed  PubMed Central  Google Scholar 

  55. Tonelli C, Chio II, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29(17):1727–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43(4):621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76(11):1485–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6(9):3777–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nezu M, Suzuki N, Yamamoto M (2017) Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am J Nephrol 45(6):473–483

    CAS  PubMed  Google Scholar 

  60. Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, Zhang DD (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cui W, Bai Y, Miao X, Luo P, Chen Q, Tan Y, Rane MJ, Miao L, Cai L (2012) Prevention of diabetic nephropathy by sulforaphane: possible role of Nrf2 upregulation and activation. Oxid Med Cell Longev 2012:1–12

    Google Scholar 

  62. Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, Liby KT, Sporn MB, Yamamoto M, Kensler TW (2009) Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol 620(1–3):138–144

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang TT, Chen YA, Li SY, Chen JW (2020) Nrf-2 mediated heme oxygenase-1 activation contributes to the anti-inflammatory and renal protective effects of Ginkgo biloba extract in diabetic nephropathy. J Ethnopharmacol 14(266):113474

    Google Scholar 

  64. Jiang B, Guo L, Li BY, Zhen JH, Song J, Peng T, Yang XD, Hu Z, Gao HQ (2013) Resveratrol attenuates early diabetic nephropathy by down-regulating glutathione s-transferases Mu in diabetic rats. J Med Food 16(6):481–486

    CAS  PubMed  Google Scholar 

  65. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365(4):327–336

    CAS  PubMed  Google Scholar 

  66. De Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, McMurray JJ (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369(26):2492–2503

    PubMed  PubMed Central  Google Scholar 

  67. Abdo S, Zhang SL, Chan JS (2015) Reactive oxygen species and nuclear factor erythroid 2-related factor 2 activation in diabetic nephropathy: a hidden target. J Diabetes Metab. https://doi.org/10.4172/2155-6156.1000547

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alaofi AL (2020) Sinapic acid ameliorates the progression of streptozotocin (STZ)-induced diabetic nephropathy in rats via NRF2/HO-1 mediated pathways. Front Pharmacol 11:1119

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma F, Wu J, Jiang Z, Huang W, Jia Y, Sun W (1866) P53/NRF2 mediates SIRT1’s protective effect on diabetic nephropathy. Biochimica et Biophysica Acta (BBA) Mol Cell Res 8:1272–1281

    Google Scholar 

  70. Wang X, Liu Q, Kong D, Long Z, Guo Y, Wang S, Liu R, Hai C (2020) Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. J Mol Histol 51(5):549–558

    CAS  PubMed  Google Scholar 

  71. Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, Liu YW (2019) Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother 111:1166–1175

    CAS  PubMed  Google Scholar 

  72. Du L, Wang J, Chen Y, Li X, Wang L, Li Y, Jin X, Gu X, Hao M, Zhu X, Yin X (2020) Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol 36(3):243–260

    CAS  PubMed  Google Scholar 

  73. Ma B, Zhu Z, Zhang J, Ren C, Zhang Q (2020) Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 64:103702

    CAS  Google Scholar 

  74. Wu J, Sun X, Jiang Z, Jiang J, Xu L, Tian A, Sun X, Meng H, Li Y, Huang W, Jia Y (2020) Protective role of NRF2 in macrovascular complications of diabetes. J Cell Mol Med 24(16):8903–8917

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

AG and TB: Conceived the idea and wrote the paper; AS: Figure Work; SBH and DG: Literature Survey; SB: Proof Read.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Consent to publish

All the authors gave the consent to publish the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Behl, T., Sehgal, A. et al. Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy. Mol Biol Rep 48, 2761–2774 (2021). https://doi.org/10.1007/s11033-021-06257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06257-5

Keywords

Navigation