Skip to main content
Log in

Optimizing mechanical stretching protocols for hypertrophic and anti-apoptotic responses in cardiomyocyte-like H9C2 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cardiomyocytes possess the ability to respond to mechanical stimuli by reprogramming their gene expression. This study investigated the effects of different loading protocols on signaling and expression responses of myogenic, anabolic, inflammatory, atrophy and pro-apoptotic genes in cardiomyocyte-like H9C2 cells. Differentiated H9C2 cells underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Atrogin-1, Foxo1, Fuca and IL-6 were measured by Real Time-PCR. The stretching-induced activation of Akt and Erk 1/2 was also evaluated by Western blot analysis. Low strain (2.7% elongation), low frequency (0.25 Hz) and intermediate duration (12 h) stretching protocol was overall the most effective in inducing beneficial responses, i.e., protein synthesis along with the suppression of apoptosis, inflammation and atrophy, in the differentiated cardiomyocytes. These findings demonstrated that varying the characteristics of mechanical loading applied on H9C2 cells in vitro can regulate their anabolic/survival program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462(1):89–104. https://doi.org/10.1007/s00424-011-0951-4 Epub 2011 Apr 19. PMID: 21499986

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17(2):225–232. https://doi.org/10.1111/jcmm.12027 PMID: 23441631; PMCID: PMC3822585

    Article  PubMed  PubMed Central  Google Scholar 

  3. Palmieri EA, Benincasa G, Di Rella F, Casaburi C, Monti MG, De Simone G, Chiariotti L, Palombini L, Bruni CB, Saccà L, Cittadini A (2002) Differential expression of TNF-alpha, IL-6, and IGF-1 by graded mechanical stress in normal rat myocardium. Am J Physiol Heart Circ Physiol 282(3):H926–H934. https://doi.org/10.1152/ajpheart.00436.2001 PMID: 11834488

    Article  CAS  PubMed  Google Scholar 

  4. Dhein S, Schreiber A, Steinbach S, Apel D, Salameh A, Schlegel F, Kostelka M, Dohmen PM, Mohr FW (2014) Mechanical control of cell biology. Effects of cyclic mechanical stretch on cardiomyocyte cellular organization. Prog Biophys Mol Biol 115(2–3):93–102. https://doi.org/10.1016/j.pbiomolbio.2014.06.006 Epub 2014 Jun 28. PMID: 24983489

    Article  CAS  PubMed  Google Scholar 

  5. Cox L, Umans L, Cornelis F, Huylebroeck D, Zwijsen A (2008) A broken heart: a stretch too far: an overview of mouse models with mutations in stretch-sensor components. Int J Cardiol 131(1):33–44. https://doi.org/10.1016/j.ijcard.2008.06.049 Epub 2008 Aug 20. PMID: 18715658

    Article  PubMed  Google Scholar 

  6. Rysä J, Tokola H, Ruskoaho H (2018) Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci Rep 8(1):4733. https://doi.org/10.1038/s41598-018-23042-w PMID: 29549296; PMCID: PMC5856749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao L et al (2016) Deletion of Interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ Res 118(12):1918–1929. https://doi.org/10.1161/CIRCRESAHA.116.308688 Epub 2016 Apr 28. Erratum in: Circ Res. 2020 Mar 27;126(7):e35. PMID: 27126808; PMCID: PMC4902783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blaauw E et al (2009) Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 299(3):H780–H787. https://doi.org/10.1152/ajpheart.00822.2009 Epub 2010 Jul 16. PMID: 20639217

    Article  CAS  Google Scholar 

  9. Sheehy SP, Grosberg A, Parker KK (2012) The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech Model Mechanobiol 11(8):1227–1239. https://doi.org/10.1007/s10237-012-0419-2 Epub 2012 Jul 7. PMID: 22772714; PMCID: PMC3786397

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116(8):1462–1476. https://doi.org/10.1161/CIRCRESAHA.116.304937 PMID: 25858069; PMCID: PMC4394185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chua SK et al (2016) Mechanical stretch inhibits MicroRNA499 via p53 to regulate Calcineurin-a expression in rat cardiomyocytes. PLoS One 11(2):e0148683. https://doi.org/10.1371/journal.pone.0148683 Erratum in: PLoS One. 2016;11(6):e0158257. PMID: 26859150; PMCID: PMC4747570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitsiades CS, Mitsiades N, Koutsilieris M (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4(3):235–256. https://doi.org/10.2174/1568009043333032 PMID: 15134532

    Article  CAS  PubMed  Google Scholar 

  13. Abilez OJ et al (2018) Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36(2):265–277. https://doi.org/10.1002/stem.2732 Epub 2017 Nov 13. PMID: 29086457; PMCID: PMC5785460

    Article  CAS  PubMed  Google Scholar 

  14. Kaushik G, Engler AJ (2014) From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. Prog Mol Biol Transl Sci 126:219–242. https://doi.org/10.1016/B978-0-12-394624-9.00009-9 PMID: 25081620; PMCID: PMC6281561

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84(10):1127–1136. https://doi.org/10.1161/01.res.84.10.1127 PMID: 10347087

    Article  CAS  PubMed  Google Scholar 

  16. Spurthi KM et al (2018) Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 293(34):13073–13089. https://doi.org/10.1074/jbc.RA118.001880 Epub 2018 Jun 21. PMID: 29929978; PMCID: PMC6109936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813(11):1978–1986. https://doi.org/10.1016/j.bbamcr.2011.03.010 Epub 2011 Mar 31. PMID: 21440011

    Article  CAS  PubMed  Google Scholar 

  18. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5(2):87–90. https://doi.org/10.1038/ncb0203-87 PMID: 12563267

    Article  CAS  PubMed  Google Scholar 

  19. Kopantseva EE, Belyavsky AV (2016) Key regulators of skeletal myogenesis. Mol Biol (Mosk) 50(2):195–222. https://doi.org/10.7868/S0026898416010079 PMID: 27239841

    Article  CAS  Google Scholar 

  20. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23(5):779–796 PMID: 19779115

    CAS  PubMed  Google Scholar 

  21. Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N (2013) Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res 100(1):105–113. https://doi.org/10.1093/cvr/cvt167 Epub 2013 Jun 20. PMID: 23794713; PMCID: PMC3778960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu ST et al (2015) The regulatory mechanisms of myogenin expression in doxorubicin-treated rat cardiomyocytes. Oncotarget 6(35):37443–37457. https://doi.org/10.18632/oncotarget.5338 PMID: 26452256; PMCID: PMC4741940

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mutlak M, Kehat I (2015) Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front Pharmacol 6:149. https://doi.org/10.3389/fphar.2015.00149 PMID: 26257652; PMCID: PMC4513555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honsho S et al (2009) Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ Res 105(11):1149–1158. https://doi.org/10.1161/CIRCRESAHA.109.208199 Epub 2009 Oct 15

    Article  CAS  PubMed  Google Scholar 

  25. Philippou A, Halapas A, Maridaki M, Koutsilieris M (2007) Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Interact 7(3):208–218

    CAS  PubMed  Google Scholar 

  26. Stavropoulou A et al (2009) IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 15(5–6):127–135. https://doi.org/10.2119/molmed.2009.00012 Epub 2009 Mar 6. PMID: 19295919; PMCID: PMC2656994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vinciguerra M, Santini MP, Claycomb WC, Ladurner AG, Rosenthal N (2009) Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2(1):43–62. https://doi.org/10.18632/aging.100107

    Article  Google Scholar 

  28. Santini MP et al (2007) Enhancing repair of the mammalian heart. Circ Res 100(12):1732–1740. https://doi.org/10.1161/CIRCRESAHA.107.148791 Epub 2007 May 24. PMID: 17525368; PMCID: PMC3227120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ezawa I et al (2016) Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci 107(6):734–745. https://doi.org/10.1111/cas.12933 Epub 2016 May 16. PMID: 26998741; PMCID: PMC4968591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Halapas A, Papalois A, Stauropoulou A, Philippou A, Pissimissis N, Chatzigeorgiou A, Kamper E, Koutsilieris M (2008) In vivo models for heart failure research. In Vivo 22(6):767–780 PMID: 19181005

    CAS  PubMed  Google Scholar 

  31. Moustogiannis A et al (2020) Characterization of optimal strain, frequency and duration of mechanical loading on skeletal Myotubes' biological responses. In Vivo 34(4):1779–1788. https://doi.org/10.21873/invivo.11972 PMID: 32606147; PMCID: PMC7439881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moorwood C et al (2014) Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle 4:13. https://doi.org/10.1186/2044-5040-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, Pissimissis N, Koutsilieris M (2009) Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo 23(4):567–575 PMID: 19567392

    CAS  PubMed  Google Scholar 

  34. Cheng WP, Wang BW, Lo HM, Shyu KG (2015) Mechanical stretch induces apoptosis regulator TRB3 in cultured cardiomyocytes and volume-overloaded heart. PLoS One 10(4):e0123235. https://doi.org/10.1371/journal.pone.0123235 PMID: 25898323; PMCID: PMC4405267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Besser RR, Ishahak M, Mayo V, Carbonero D, Claure I, Agarwal A (2018) Engineered microenvironments for maturation of stem cell derived cardiac myocytes. Theranostics 8(1):124–140. https://doi.org/10.7150/thno.19441 PMID: 29290797; PMCID: PMC5743464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Philippou A, Maridaki M, Halapas A, Koutsilieris M (2007) The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo 21(1):45–54 PMID: 17354613

    CAS  PubMed  Google Scholar 

  37. Juffer P et al (2014) Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem Biophys 69(3):411–419. https://doi.org/10.1007/s12013-013-9812-4 PMID: 2440267438

    Article  CAS  PubMed  Google Scholar 

  38. Philippou A, Maridaki M, Pneumaticos S, Koutsilieris M (2014) The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol Med 20(1):202–214. https://doi.org/10.2119/molmed.2014.00011 PMID: 24637928; PMCID: PMC4022784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70. https://doi.org/10.1196/annals.1302.005 PMID: 15201149.40

    Article  PubMed  Google Scholar 

  40. Buyandelger B et al (2014) Mechano-signaling in heart failure. Pflugers Archiv Eur J Physiol 466(6):1093–1099. https://doi.org/10.1007/s00424-014-1468-4

    Article  CAS  Google Scholar 

  41. Ying H, Xu MC, Tan JH, Shen JH, Wang H, Zhang DF (2014) Pressure overload-induced cardiac hypertrophy response requires janus kinase 2-histone deacetylase 2 signaling. Int J Mol Sci 15(11):20240–20253. https://doi.org/10.3390/ijms151120240 PMID: 25380525; PMCID: PMC4264164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia L-X et al (2015) Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection. J Pathol 236(3):373–383. https://doi.org/10.1002/path.4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kitamura, T., et al., (2007) A Foxo/notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest. 117(9):2477–2485. doi: 10.1172/JCI32054. PMID: 17717603; PMCID: PMC1950461

  44. Gumucio JP, Mendias CL (2012) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43(1):12–21. https://doi.org/10.1007/s12020-012-9751-7 Epub 2012 Jul 20. PMID: 22815045; PMCID: PMC3586538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 243(2):118–128. https://doi.org/10.1177/1535370217749494 Epub 2018 Jan 7. PMID: 29307280; PMCID: PMC5788151

    Article  CAS  Google Scholar 

  46. Tani H, Sadahiro T, Ieda M (2018) Direct cardiac reprogramming: a novel approach for heart regeneration. Int J Mol Sci 19(9):2629. https://doi.org/10.3390/ijms19092629 PMID: 30189626; PMCID: PMC6165160

    Article  CAS  PubMed Central  Google Scholar 

  47. Inagawa K, Ieda M (2013) Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 6(1):37–45. https://doi.org/10.1007/s12265-012-9412-5 Epub 2012 Oct 3. PMID: 23054660

    Article  PubMed  Google Scholar 

  48. Pagano M, Naviglio S, Spina A, Chiosi E, Castoria G, Romano M, Sorrentino A, Illiano F, Illiano G (2004) Differentiation of H9c2 cardiomyoblasts: the role of adenylate cyclase system. J Cell Physiol 198(3):408–416. https://doi.org/10.1002/jcp.10420 PMID: 14755546

    Article  CAS  PubMed  Google Scholar 

  49. Huang W, Liu X, Chen R, Feng L, Liao H, Yu L, Zeng H (2012) [Effects of mechanical stretch with variant frequencies on alignment and differentiation of multilayer myotubes cultured in vitro]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 26(6):735–42. Chinese. PMID: 22792775

  50. Abe S et al (2009) Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat Histol Embryol 38(4):305–310. https://doi.org/10.1111/j.1439-0264.2009.00945.x PMID: 19614631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Panagiotis Lembessis, National and Kapodistrian University of Athens, for the critical reading of the manuscript.

Funding

The Authors declare that no external or extramural support was provided and funding was exclusively through the Department of Physiology, Medical School, National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Contributions

EZ designed and performed the experiments, analyzed the data and wrote the manuscript; AP and MK conceived or designed the experiments, analyzed data and wrote the manuscript; AM performed the experiments and analyzed the data; AC analyzed data and reviewed the manuscript. All Authors have read and approved the final manuscript.

Corresponding author

Correspondence to Michael Koutsilieris.

Ethics declarations

Conflict of interest

The Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zevolis, E., Philippou, A., Moustogiannis, A. et al. Optimizing mechanical stretching protocols for hypertrophic and anti-apoptotic responses in cardiomyocyte-like H9C2 cells. Mol Biol Rep 48, 645–655 (2021). https://doi.org/10.1007/s11033-020-06112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06112-z

Keywords

Navigation